Task Design Potential of Using an Interactive Whiteboard for Implementing Inquiry-Based Learning in Mathematics

Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 8)

Abstract

This chapter explores the role and potential of using an Interactive Whiteboard (IWB) for inquiry-based learning. A case study on how a French school teacher uses an interactive whiteboard is presented, illustrating how an IWB expands the milieu (Brousseau in Theory of didactical situations in mathematics. Dordrecht: Kluwer, 1997) of the learning situation and the collective part of the class investigation and suggests a mesogenesis-topogenesis-chronogenesis heuristic for digital pedagogical task design.

Keywords

Interactive whiteboard Inquiry-based learning 

References

  1. Artigue, M., & Blomhoj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45, 797–810.CrossRefGoogle Scholar
  2. Bachelard, G. (1934). La Formation de L’esprit Scientifique. Retrieved from http://classiques.uqac.ca/classiques/bachelard_gaston/formation_esprit_scientifique/formation_esprit.pdf.
  3. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.Google Scholar
  4. Chevallard, Y. (1989). Le passage de l’arithmétique à l’algèbre dans l’enseignement des mathématiques au collège. Deuxième partie. Perspectives curriculaires: la notion de modélisation Petit x, 19, 43–72.Google Scholar
  5. Chevallard, Y. (1992). Fundamental concepts in didactics: Perspectives provided by an anthropological approach. In Recherches en Didactique des Mathématiques, special issue 131–167.Google Scholar
  6. Chevallard, Y. (2002a). Organiser l’étude. Structures et fonctions. In J.-L. Dorier, M. Artaud, M. Artigue, R. Berthelot, & R. Floris (Eds.) Actes de la 11 e école d’été de didactique des mathématiques (pp. 3–22). Grenoble: La Pensée Sauvage.Google Scholar
  7. Chevallard, Y. (2002b). Les TPE comme problème didactique. In T. Assude, & B. Grugeon Allys (Eds.), Actes du séminaire national de didactique des mathématiques 2001 (pp. 177–188). Paris: IREM de Paris 7 et ARDM.Google Scholar
  8. Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 21–30). Barcellona: Universitat Ramon Llull.Google Scholar
  9. Chevallard, Y. (2011). La notion d’ingénierie didactique, un concept à réfonder. Questionnement et éléments de réponse à partir de la TAD. In C. Margolinas, M. Abboud-Blanchard, L. Bueno-Ravel, N. Douek, A. Fluckiger, N. Douek, F. Vandebrouck, & F. Wozniak (Eds.), En amont et en aval des ingénieries didactiques (pp 81–108). Grenoble: La pensée sauvage.Google Scholar
  10. Chevallard, Y., & Wozniak, F. (2013). Le calcul proportionnel et le symbole ∝: enquête sur une œuvre mathématique méconnue. In A. Bronner, C. Bulf, C. Castela, J.-P. Georget, M. Larguier, B. Pedemonte, A. Pressiat, & É. Roditi (Eds.), Questions vives en didactique des mathématiques: problèmes de la profession d’enseignant, rôle du langage (pp. 421–446). Grenoble: La pensée sauvage.Google Scholar
  11. Herget, W., & Torres-Skoumal, M. (2007). Picture (im)perfect mathematics! In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 379–386). New-York: Springer.CrossRefGoogle Scholar
  12. Ladage, C., & Chevallard, Y. (2011). Enquêter avec l’internet Études pour une didactique de l’enquête. Éducation & Didactique, 5(2), 85–115.CrossRefGoogle Scholar
  13. Miller, D., Averis, D., Door, V., & Glover, D. (2005). How can the use of an interactive whiteboard enhance the nature of teaching and method in secondary mathematics and modern foreign languages: ICT Research Bursaries. Report proposed to Becta.Google Scholar
  14. Miller, D., Glover, D., & Averis, D. (2008). Enabling enhanced mathematics teaching with interactive whiteboards. Final Report for the National Centre for Excellence in the Teaching of Mathematics.Google Scholar
  15. Minner, D., Jurist Levy, A., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1085 to 2002. Journal of Research in Science Teaching, 47(4), 363–496.CrossRefGoogle Scholar
  16. Peter-Koop, A. (2004). Fermi problems in primary mathematics classrooms: students’ interactive modelling processes. In I. Putt, R. Faragher, & M. McLean (Eds.), Mathematics education for the third millennium, towards 2010. MERGA 2004 conference proceedings (pp. 454–461). Sydney: Merga, Inc.Google Scholar
  17. Smith, F., Hardman, F., & Higgins, S. (2006). The impact of interactive whiteboards on teacher-student interaction in the national literacy and numeracy strategies. British Educational Research Journal, 32(3), 443–457.CrossRefGoogle Scholar
  18. Swan, M. (2005) Improving learning in mathematics: challenges and strategies. Retrieved from http://www.ncetm.org.uk/files/224/improving_learning_in_mathematicsi.pdf.
  19. Wood, R., & Ashfield, J. (2008). The use of the interactive whiteboard for creative teaching and method in literacy and mathematics: a case study. British Journal of Educational Technology, 39(1), 84–96.Google Scholar
  20. Wozniak, F. (2012). Des professeurs des écoles face à un problème de modélisation: une question d’équipement praxéologique. Recherches en Didactique des Mathématiques, 32(1), 7–55.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Université de Strasbourg, IRIST, EA 3424StrasbourgFrance

Personalised recommendations