Skip to main content

Toward New Applications of the Adjoint Sensitivity Tools in Data Assimilation

  • Chapter
  • First Online:
Book cover Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)

Abstract

Novel applications of the adjoint-based sensitivity tools are investigated to obtain a priori guidance on the forecast impact of modeling correlated observational errors in a four-dimensional variational data assimilation system (4D-Var DAS) . A synergistic framework is considered that combines a posteriori estimates to the observation error covariance (R) and derivative information extracted from the adjoint-DAS forecast error R-sensitivity (FSR ). It is explained that the FSR approach allows the analysis of structured error correlation models and estimation of their potential impact on reducing the forecast errors. Theoretical aspects are discussed and a proof-of-concept is provided with Lorenz’s 40-variable model. The practical ability to exercise these new adjoint capabilities is shown in experiments performed with the Naval Research Laboratory Atmospheric Variational Data Assimilation System-Accelerated Representer (NAVDAS-AR) and the Navy’s Global Environmental Model (NAVGEM). In particular, the FSR analysis of radiances assimilated from the Infrared Atmospheric Sounding Interferometer (IASI) indicates that modeling inter-channel observation error correlations may provide an increased benefit to the forecasts, as compared with tuning procedures that ignore the error correlations and only adjust the assigned observation error variance parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker NL, Daley R (2000) Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q J R Meteorol Soc 126:1431–1454

    Article  Google Scholar 

  • Bannister RN (2008a) A review of forecast error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast error covariances. Q J R Meteorol Soc 134:1951–1970

    Article  Google Scholar 

  • Bannister RN (2008b) A review of forecast error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast error covariance statistics. Q J R Meteorol Soc 134:1971–1996

    Article  Google Scholar 

  • Bormann N, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: methods and applications to ATOVS data. Q J R Meteorol Soc 136:1036–1050

    Article  Google Scholar 

  • Bormann N, Collard A, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. II: applications to AIRS and IASI data. Q J R Meteorol Soc 136:1051–1063

    Article  Google Scholar 

  • Bormann N, Geer AJ, Bauer P (2011) Estimates of observation-error characteristics in clear and cloudy regions for microwave imager radiances from numerical weather prediction. Q J R Meteorol Soc 137:2014–2023

    Article  Google Scholar 

  • Bouttier F, Derber J, Fisher M (1997) The 1997 revision of the Jb term in 3D/4D-Var. ECMWF Res Dept Tech Memo 238 (available from ECMWF, Reading UK)

    Google Scholar 

  • Brousseau P, Berre L, Bouttier F, Desroziers G (2012) Flow-dependent background-error covariances for a convective-scale data assimilation system. Q J R Meteorol Soc 138:310–322

    Article  Google Scholar 

  • Buehner M (2005) Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting. Q J R Meteorol Soc 131:1013–1043

    Article  Google Scholar 

  • Campbell WF, Satterfield EA (2015) Accounting for correlated satellite observation error in NAVGEM. Presentation J9.1 to 11th annual symposium on new generation operational environmental satellite systems, 95th american meteorological society annual meeting, Phoenix, AZ. Recorded presentation. https://ams.confex.com/ams/95Annual/webprogram/Paper257046.html

  • Clayton AM, Lorenc AC, Barker DM (2013) Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Q J R Meteorol Soc 139:1445–1561

    Article  Google Scholar 

  • Collard AD (2007) Selection of IASI channels for use in numerical weather prediction. Q J R Meteorol Soc 133:1977–1991

    Article  Google Scholar 

  • Daescu DN (2008) On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation. Mon Weather Rev 136:3050–3065

    Article  Google Scholar 

  • Daescu DN, Todling R (2010) Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Q J R Meteorol Soc 136:2000–2012

    Article  Google Scholar 

  • Daescu DN, Langland RH (2013a) Error covariance sensitivity and impact estimation with adjoint 4D-Var: theoretical aspects and first applications to NAVDAS-AR. Q J R Meteorol Soc 139:226–241

    Article  Google Scholar 

  • Daescu DN, Langland RH (2013b) The adjoint sensitivity guidance to diagnosis and tuning of error covariance parameters. In: Park SK, Xu L (eds) Data assimilation for atmospheric, oceanic and hydrologic applications, vol II. Springer, pp 205–232

    Google Scholar 

  • Daescu DN, Langland RH (2013c) Adjoint estimation of the forecast impact of observation error correlations derived from a posteriori covariance diagnosis. Presentation 17.3 to 6th symposium on data assimilation, University of Maryland, College Park, MD. Webinar recording. http://das6.cscamm.umd.edu/program/das6_program.html

  • Daescu DN, Navon IM (2013) Sensitivity analysis in nonlinear variational data assimilation: theoretical aspects and applications. In: Faragó I, Havasi Á, Zlatev Z (eds) Advanced numerical methods for complex environmental models: needs and availability, pp 276–300. eISBN:978-1-60805-778-8 ISBN:978-1-60805-777-1. Bentham Science

    Google Scholar 

  • Desroziers G, Berre L, Chapnik B, Poli P (2005) Diagnosis of observation, background, and analysis-error statistics in observation space. Q J R Meteorol Soc 131:3385–3396

    Article  Google Scholar 

  • Garand L, Heilliette S, Buehner M (2007) Interchannel error correlation associated with AIRS radiance observations: inference and impact in data assimilation. J Appl Meteorol 46:714–725

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Gneiting T (1999) Correlation functions for atmospheric data analysis. Q J R Meteorol Soc 125:2449–2464

    Article  Google Scholar 

  • Goldberg MD, Qu Y, McMillin LM, Wolf W, Zhou L, Divakarla M (2003) AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans Geosci Remote Sens 41(2):379–389

    Article  Google Scholar 

  • Hogan TF, Liu M, Ridout JA, Peng MS, Whitcomb TR, Ruston BC, Reynolds CA, Eckermann SD, Moskaitis JR, Baker NL, McCormack JP, Viner KC, McLay JG, Flatau MK, Xu L, Chen C, Chang SW (2014) The navy global environmental model. Oceanography 27(3):116–125

    Article  Google Scholar 

  • Kuhl DD, Rosmond TE, Bishop CH, McLay J, Baker NL (2013) Comparison of hybrid ensemble/4DVar and 4Dvar within the NAVDAS-AR data assimilation framework. Mon Weather Rev 141:2740–2758

    Article  Google Scholar 

  • Lahoz W (2010) Research satellites. In: Lahoz W, Khattatov B, Ménard R (eds) Data assimilation: making sense of observations. Springer, pp 301–321

    Google Scholar 

  • Langland RH, Baker NL (2004) Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus 56A:189–201

    Article  Google Scholar 

  • Liu J, Kalnay E (2008) Estimating observation impact without adjoint model in an ensemble Kalman filter. Q J R Meteorol Soc 134:1327–1335

    Article  Google Scholar 

  • Liu J, Kalnay E, Miyoshi T, Cardinali C (2009) Analysis sensitivity calculation in an ensemble Kalman filter. Q J R Meteorol Soc 135:1842–1851

    Article  Google Scholar 

  • Lorenc AC, Bowler NE, Clayton AM, Pring SR, Fairbairn D (2015) Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon Weather Rev 143:212–229

    Article  Google Scholar 

  • Lorenz EN, Emanuel KA (1998) Optimal sites for supplementary weather observations: simulation with a small model. J Atmos Sci 55:399–414

    Article  Google Scholar 

  • Lupu C, Cardinali C, McNally AP (2015) Adjoint-based forecast sensitivity applied to observation error variances tuning. Q J R Meteorol Soc 141:3157–3165. doi:10.1002/qj.2599

  • McNally AP, Watts PD, Smith JA, Engelen R, Kelly GA, Thépaut JN, Matricardi M (2006) The assimilation of AIRS radiance data at ECMWF. Q J R Meteorol Soc 132:935–957

    Article  Google Scholar 

  • Pauley PM (2003) Supperobbing satellite winds for NAVDAS. Technical report. NRL/MR/7530-03-8670, Naval Research Laboratory, Monterey, CA, p 102

    Google Scholar 

  • Rosmond T, Xu L (2006) Development of NAVDAS-AR: non-linear formulation and outer loop tests. Tellus 58A:45–58

    Article  Google Scholar 

  • Stewart LM, Dance SL, Nichols NK (2013) Data assimilation with correlated observation errors: experiments with a 1-D shallow water model. Tellus A 65:19546

    Article  Google Scholar 

  • Stewart LM, Dance SL, Nichols NK, Eyre JR, Cameron J (2014) Estimating interchannel observation-error correlations for IASI radiance data in the Met Office system. Q J R Meteorol Soc 140:1236–1244

    Article  Google Scholar 

  • Talagrand O (1999) A posteriori evaluation and verification of the analysis and assimilation algorithms. In: proceedings of workshop on diagnosis of data assimilation systems. ECMWF, Reading, UK, pp 17–28

    Google Scholar 

  • Thépaut JN, Andersson E (2010) The global observing system. In: Lahoz W, Khattatov B, Ménard R (eds) Data assimilation: making sense of observations. Springer, pp 263–281

    Google Scholar 

  • Todling R (2015) A complementary note to ‘A lag-1 smoother approach to system-error estimation’: the intrinsic limitations of residual diagnostics. Q J R Meteorol Soc 141:2917–2922

    Article  Google Scholar 

  • Waller JA, Dance SL, Lawless AS, Nichols NK (2014) Estimating correlated observation error statistics using an ensemble transform Kalman filter. Tellus A 66:23294

    Article  Google Scholar 

  • Wang X, Parrish D, Kleist D, Whitaker J (2013) GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: single-resolution experiments. Mon Weather Rev 141:4098–4117

    Article  Google Scholar 

  • Weston PP, Bell W, Eyre JR (2014) Accounting for correlated error in the assimilation of high-resolution sounder data. Q J R Meteorol Soc 140:2420–2429

    Article  Google Scholar 

  • Xu L, Rosmond T, Daley R (2005) Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus 57A:546–559

    Article  Google Scholar 

Download references

Acknowledgements

The work of D.N. Daescu was supported by the Naval Research Laboratory Atmospheric Effects, Analysis, and Prediction BAA #75-11-01 under award N00173-13-1-G903. Support for the second author from the sponsor ONR-PR-0602435N is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dacian N. Daescu .

Editor information

Editors and Affiliations

Appendix

Appendix

As shown by Desroziers et al. (2005), the error covariance estimates \(\widetilde{\mathbf{R}}\) in (3) and \(\widetilde{\mathbf{B}}\) in (4) are expressed, respectively, as

$$\begin{aligned} {\widetilde{\mathbf{R}}}= & {} \mathbf{R}\left( \mathbf{H}{} \mathbf{B}{} \mathbf{H}^\mathrm{T} + \mathbf{R}\right) ^{-1}\left( \mathbf{H}{} \mathbf{B}_t\mathbf{H}^\mathrm{T} + \mathbf{R}_t\right) \end{aligned}$$
(39)
$$\begin{aligned} \mathbf{H}{\widetilde{\mathbf{B}}}\mathbf{H}^\mathrm{T}= & {} \mathbf{H}{} \mathbf{B}{} \mathbf{H}^\mathrm{T}\left( \mathbf{H}{} \mathbf{B}\mathbf{H}^\mathrm{T} + \mathbf{R}\right) ^{-1} \left( \mathbf{H}{} \mathbf{B}_t\mathbf{H}^\mathrm{T} + \mathbf{R}_t\right) \end{aligned}$$
(40)

By analogy with (1) and (2), the analysis state associated with the covariancespecification \(({\widetilde{\mathbf{B}}},{\widetilde{\mathbf{R}}})\) is expressed as

$$\begin{aligned} \widetilde{\mathbf{x}}^a= & {} \mathbf{x}^b + \widetilde{\mathbf{K}}\left[ \mathbf{y}-\mathbf{h}(\mathbf{x}^b)\right] \end{aligned}$$
(41)
$$\begin{aligned} \widetilde{\mathbf{K}}= & {} \widetilde{\mathbf{B}}{} \mathbf{H}^\mathrm{T}\left( \mathbf{H}{\widetilde{\mathbf{B}}}{} \mathbf{H}^\mathrm{T} + \widetilde{\mathbf{R}}\right) ^{-1} \end{aligned}$$
(42)

By adding (39) and (40), it is noticed that the estimates \(({\widetilde{\mathbf{B}}},{\widetilde{\mathbf{R}}})\) are consistent with the innovation error covariance,

$$\begin{aligned} \mathbf{H}{\widetilde{\mathbf{B}}}{} \mathbf{H}^\mathrm{T} + \widetilde{\mathbf{R}} = \mathbf{H}{} \mathbf{B}_t\mathbf{H}^\mathrm{T} + \mathbf{R}_t \end{aligned}$$
(43)

and this property has prompted research on covariance tuning procedures based on the diagnosis estimates (39), (40). However, as explained by Daescu and Langland (2013c), the operator \(\mathbf{H}{} \mathbf{K}\) remains invariant when the status quo specification \((\mathbf{B},\mathbf{R})\) is replaced by the estimates \((\widetilde{\mathbf{B}},\widetilde{\mathbf{R}})\),

$$\begin{aligned} \mathbf{H}{} \mathbf{K} = \mathbf{H}\widetilde{\mathbf{K}} \end{aligned}$$
(44)

The relationship (44) was established in Daescu and Langland (2013c) as follows.

$$\begin{aligned} \mathbf{H}{} \mathbf{\widetilde{\mathbf{K}}}&\mathop {=}\limits ^{(42)} \mathbf{H} \widetilde{\mathbf{B}}{} \mathbf{H}^\mathrm{T}\left( \mathbf{H}{\widetilde{\mathbf{B}}}{} \mathbf{H}^\mathrm{T} + \widetilde{\mathbf{R}}\right) ^{-1}\\&\mathop {=}\limits ^{(40)} \mathbf{H}{} \mathbf{B}{} \mathbf{H}^\mathrm{T}\left( \mathbf{H}\mathbf{B}{} \mathbf{H}^\mathrm{T} + \mathbf{R}\right) ^{-1} \left( \mathbf{H}{} \mathbf{B}_t\mathbf{H}^\mathrm{T} + \mathbf{R}_t\right) \left( \mathbf{H}{\widetilde{\mathbf{B}}}{} \mathbf{H}^\mathrm{T} + \widetilde{\mathbf{R}}\right) ^{-1}\\&\mathop {=}\limits ^{(43)} \mathbf{H}{} \mathbf{B}{} \mathbf{H}^\mathrm{T} \left( \mathbf{H}{} \mathbf{B}{} \mathbf{H}^\mathrm{T} + \mathbf{R}\right) ^{-1}\\&\mathop {=}\limits ^{(2)} \mathbf{H}{} \mathbf{K} \end{aligned}$$

From (1), (41), and (44) it follows that

$$\begin{aligned} \mathbf{H}{} \mathbf{x}^a = \mathbf{H}\widetilde{\mathbf{x}}^a \end{aligned}$$
(45)

and therefore, replacing the status quo model \((\mathbf{B}, \mathbf{R})\) by the a posteriori diagnosis model \((\widetilde{\mathbf{B}}, \widetilde{\mathbf{R}})\) has no impact on the observation-space representation of the analysis. In particular, if \(\mathbf{H}\) is the identity operator, \(\mathbf{H} = \mathbf{I}\), then the covariance specification \((\widetilde{\mathbf{B}}, \widetilde{\mathbf{R}})\) has no impact on the analysis,

$$\begin{aligned} \mathbf{x}^a = \widetilde{\mathbf{x}}^a \end{aligned}$$
(46)

It is also noticed that the equivalence between (5) and (39) is established from the identities

$$\begin{aligned} \mathbf{I} - \mathbf{HK} = \mathbf{R}\left( \mathbf{H}{} \mathbf{B}{} \mathbf{H}^\mathrm{T} + \mathbf{R}\right) ^{-1}; \,\,\,\,\,\, \left( \mathbf{I} - \mathbf{HK_t}\right) ^{-1}{} \mathbf{R}_t = \mathbf{H}{} \mathbf{B}_t\mathbf{H}^\mathrm{T} + \mathbf{R}_t \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daescu, D.N., Langland, R.H. (2017). Toward New Applications of the Adjoint Sensitivity Tools in Data Assimilation. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III). Springer, Cham. https://doi.org/10.1007/978-3-319-43415-5_16

Download citation

Publish with us

Policies and ethics