Skip to main content

Measurement Implementations

  • Chapter
  • First Online:
Quantum Measurement

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 2850 Accesses

Abstract

Following the introduction and study of a range of concrete operator measures representing quantum mechanical observables in earlier chapters (notably Chaps. 8, 1417), we now apply the tools of measurement theory developed in Chap. 10 to illustrate the implementation of more or less realistic measurement schemes for typical observables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The coupling operator used by Arthurs and Kelly has \(P_2\) in the place of \(Q_2\), so that in this case the appropriate pointer observable for the second probe is \(Q_2\).

  2. 2.

    For the usual technical precautions concerning equations such as (19.1), see Footnote 1 in Chap. 15.

  3. 3.

    A rigorous proof of this equation is obtained by adaptation of arguments from [5] along the lines of Exercises 6, 7 and 8 of Chap. 15. This also shows that (19.1) defines a unitary operator, without giving explicitly the spectral decomposition of the unique selfadjoint extension of the essentially selfadjoint operator \(-\lambda Q\otimes P_1\otimes I_2\,+\kappa \, P\otimes I_1\otimes Q_2\).

  4. 4.

    This presentation follows closely [13].

  5. 5.

    The development of the examples in this section follows closely the review [24].

References

  1. Arthurs, E., Kelly, J.: On the simultaneous measurements of a pair of conjugate observables. Bell Syst. Tech. 44, 725–729 (1965)

    Article  Google Scholar 

  2. Busch, P.: Indeterminacy relations and simultaneous measurements in quantum theory. Int. J. Theor. Phys. 24(1), 63–92 (1985) (Based on P. Busch, Doctoral Dissertation, University of Cologne (1982)

    Google Scholar 

  3. Raymer, M.G.: Uncertainty principle for joint measurement of noncommuting variables. Am. J. Phys. 62, 986–993 (1994)

    Article  ADS  Google Scholar 

  4. Törmä, P., Stenholm, S., Jex, I.: Measurement and preparation using two probe modes. Phys. Rev. A 52, 4812–4822 (1995)

    Article  ADS  Google Scholar 

  5. Taylor, M.E.: Noncommutative Harmonic Analysis. Mathematical Surveys and Monographs, vol. 22. American Mathematical Society, Providence (1986)

    Google Scholar 

  6. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Physik 43, 172–198 (1927)

    Article  ADS  Google Scholar 

  7. Loudon, R.: The Quantum Theory of Light. Oxford University Press, Oxford (1973)

    Google Scholar 

  8. Perina, J.: Coherence of Light. D. Reidel Publishing Company, Dordrecht (1985)

    Google Scholar 

  9. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  10. Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics, 2nd edn. Lecture Notes in Physics Monographs, vol. 31. Springer, Berlin (1997)

    Google Scholar 

  11. Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. Ser. A 114(767), 243–265 (1927)

    Article  ADS  MATH  Google Scholar 

  12. Schumaker, B.L.: Quantum mechanical pure states with gaussian wave functions. Phys. Rep. 135(6), 317–408 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lahti, P., Pellonpää, J.-P., Schultz, J.: Realistic eight-port homodyne detection and covariant phase space observables. J. Mod. Opt. 57(13), 1171–1179 (2010)

    Article  ADS  MATH  Google Scholar 

  14. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    Google Scholar 

  15. Kiukas, J., Lahti, P.: A note on the measurement of phase space observables with an eight-port homodyne detector. J. Mod. Opt. 55(12), 1891–1898 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Werner, R.: Quantum harmonic analysis on phase space. J. Math. Phys. 25(5), 1404–1411 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lahti, P., Pellonpää, J.-P.: Covariant phase observables in quantum mechanics. J. Math. Phys. 40(10), 4688–4698 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Pellonpää, J.-P., Schultz, J., Paris, M.G.A.: Balancing efficiencies by squeezing in realistic eight-port homodyne detection. Phys. Rev. A 83, 043818 (2011)

    Article  ADS  Google Scholar 

  19. Carmeli, C., Heinosaari, T., Pellonpää, J.-P., Toigo, A.: Optimal covariant measurements: the case of a compact symmetry group and phase observables. J. Phys. A 42(14), 145304, 18 (2009)

    Google Scholar 

  20. Pellonpää, J.-P., Schultz, J.: Measuring the canonical phase with phase-space measurements. Phys. Rev. A 88, 012121 (2013)

    Article  ADS  Google Scholar 

  21. Albini, P., De Vito, E., Toigo, A.: Quantum homodyne tomography as an informationally complete positive-operator-valued measure. J. Phys. A 42(29), 295302, 12 (2009)

    Google Scholar 

  22. Lahti, P., Pellonpää, J.-P.: Continuous variable tomographic measurements. Phys. Lett. A 373(38), 3435–3438 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Pellonpää, J.-P.: Quantum tomography, phase-space observables and generalized Markov kernels. J. Phys. A 42(46), 465303, 18 (2009)

    Google Scholar 

  24. Busch, P., Shilladay, C.: Complementarity and uncertainty in Mach-Zehnder interferometry and beyond. Phys. Rep. 435(1), 1–31 (2006)

    Article  ADS  Google Scholar 

  25. Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature 351, 111–116 (1991)

    Article  ADS  Google Scholar 

  26. Englert, B.-G., Bergou, J.A.: Quantitative quantum erasure. Opt. Commun. 179(1–6), 337–355 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Busch .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Busch, P., Lahti, P., Pellonpää, JP., Ylinen, K. (2016). Measurement Implementations. In: Quantum Measurement. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-43389-9_19

Download citation

Publish with us

Policies and ethics