Skip to main content

Economic Characteristics of Deepwater Natural Gas Hydrate

  • Chapter
  • First Online:
Book cover Exploration and Production of Oceanic Natural Gas Hydrate

Abstract

Natural gas hydrate (NGH) is unique among gas resources. In its natural state NGH is a pure, solid crystalline material formed by digenetic crystallization in permafrost regions and in marine sediments where temperature, pressure, and gas flux are suitable. NGH compresses methane and minor other gases by about 164 times (above 1 atm @ STP) within the crystal structure. Greater than 95 % of the NGH resource is found sediments below seafloors that are deeper than 500 m in the open ocean. Concentrations of NGH occur generally in host sandy turbidites within and near the base of the gas hydrate stability zone (GHSZ), the shallow sub-seafloor interval where the pressure and temperature conditions allow NGH concentrations to potentially form, and that have economic potential for production of its natural gas. This has meant that NGH development was not able to follow the same small company exploitation that has commercialized coal bed methane and the shale resource. NGH is stable within its sedimentary hosts and will only convert to its constituent gas and water phases relatively quickly if reservoir pressure-temperature conditions are artificially disturbed. Environmental change can induce conditions that may cause more NGH to form or dissociate, but relatively slowly. Induced dissociation has the potential to produce gas relatively rapidly. NGH is potentially the largest of the three types of unconventional gas resources, with estimates of gas-in-place within producible reservoirs in excess of 40,000 Tcf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The HHV of a fuel is defined as the amount of heat released at 25 °C and the products returned to a temperature of 25 °C, which takes into account the latent heat of water vaporization.

References

  • Archer, D. 2007. Methane hydrate stability and anthropogenic climate change. Biogeosciences Discussions, European Geosciences Union 4(2): 993–1057. hal-00297882.

    Google Scholar 

  • Barnard, A., W.W. Sager, J.E. Snow, and M.D. Max. 2015. Subsea gas emissions from the barbados accretionary complex. Marine and Petroleum Geology 64: 31–42. doi:10.1016/j.marpetgeo.2015.02.008.

    Article  Google Scholar 

  • Barton, C.M. 2015. Industry continues to provide solutions for deepwater production challenges. Oilpro 25 May 2015, 8 pp.

    Google Scholar 

  • Beaudoin, Y.C., W. Waite, R. Boswell, and S.R. Dallimore (eds). 2014a. Frozen heat: A UNEP global outlook on methane gas hydrates. Vol. 1. United Nations Environment Programme, GRID-Arendal. United Nations Environment Programme, 2014, 80 pp. (ISBN: 978-92-807-3429-4 Job No: DEW/1866/NO).

    Google Scholar 

  • Beaudoin, Y.C., S.R. Dallimore, and R. Boswell (eds). 2014b. Frozen heat:A UNEP global outlook on methane gas hydrates. Vol. 2. United Nations Environment Programme, GRID-Arendal. United Nations Environment Programme, 2014, 96 pp. (ISBN: 978-92-807-3319-8 Job No: DEW/1633/NO).

    Google Scholar 

  • Bhatnagar, G., W.G. Chapman, G.R. Dickens, B. Dugan, and G.J. Hirasaki. 2008. Sulfate-methane transition as a proxy for average methane hydrate saturation in marine sediments. Geophysical Research Letters 35: L03611. doi:10.1029/2007GL032500.

    Article  Google Scholar 

  • Boswell, R., and T.S. Collett. 2006. The gas hydrates resource pyramid: Fire in the ice, methane hydrate newsletter, US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 6(3): 5–7 (Fall Issue).

    Google Scholar 

  • Boswell, R., T.S. Collett, M. Frye, D. McConnell, W. Shedd, R. Dufrene, P. Godfriaux, S. Mrozewski, G. Guerin, and A. Cook. 2012a. Gulf of Mexico gas hydrate joint industry project leg II: Technical summary. NETL, Morgantown WV: US Department of Energy.

    Google Scholar 

  • Boswell, R., T.S. Collett, M. Frye, W. Shedd, D.R. McConnell, and D. Shelander. 2012b. Subsurface gas hydrates in the northern Gulf of Mexico, Marine and Petroleum Geology, 21 pp. doi:10.1016/j.marpetgeo.2011.10.003.

    Google Scholar 

  • Brewer, P.G., F.M. Orr, G. Friederich, K.A. Kvenvolden, and D.L. Orange. 1998. Gas hydrate formation in the deep sea: In-situ experiments with controlled release of methane, natural gas, and carbon dioxide. Energy & Fuels 12: 183–188.

    Article  Google Scholar 

  • Claypool, G.W., and I.R. Kaplan. 1974. Methane in marine sediments. In: Gas in marine sediments, ed. Kaplan, I.R., 73–99. Plenum.

    Google Scholar 

  • Crager, B. 2015. Slide 9 subsea production systems—market update. endeavor management (2014). http://oilpro.com/gallery/249/3665.

  • Collett, T.S., A.H. Johnson, C.C. Knapp, and R Boswell. 2009. In: Natural gas hydrates: A review. american association of petroleum geologists memoir, eds. T.S. Collett, A.H. Johnson, C.C Knapp, and R. Boswell. 89: 146–219. (ISBN13: 918-0-89181-370-5).

    Google Scholar 

  • Daigle, H., A. Cook, and A. Malinverno. 2015. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico. Marine and Petroleum Geology 68: 551–564. doi:10.1016/j.marpetgeo.2015.10.004.

    Article  Google Scholar 

  • Davie, M.K., and B.A. Buffett. 2001. A numerical model for the formation of gas hydrate below the seafloor. Journal of Geophysical Research 106(B1): 497–514.

    Article  Google Scholar 

  • Dickens, G.R., C.K. Paull, P. Wallace, and ODP Leg 164 Scientific Party. 1997. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385: 426–428.

    Google Scholar 

  • EIA. 2015. The growth of U.S. natural gas: An uncertain outlook for U.S and world supply. Presentation at EIA energy conference June 15, 2015, Washington DC, 44 pp. http://www.eia.gov/conference/2015/pdf/presentations/staub.pdf. Accessed 6 Jan 2016.

  • Englezos, P., and P.R. Bishnoi. 1988. Prediction of gas hydrate formation conditions in aqueous electrolyte solutions. American Institute of Chemical Engineers 34(10): 1718–1721.

    Article  Google Scholar 

  • Evans, P.N., D.H. Parks, G.L. Chadwick, S.J. Robbins, V.J. Orphan, S.D. Golding, and G.W. Tyson. 2015. Methane metabolism in the archaeal phylum bathyarchaeota revealed by genome-centric metagenomics. Science 350: 434–438.

    Article  Google Scholar 

  • Fisher, C.R., I.R. MacDonald, R. Sassen, C.M. Young, S.A. Macko, S. Hourdez, R.S. Carney, S. Joye, and E. McMullin. 2000. Methane ice worms hesiocaeca methanicola colonizing fossil fuel reserves. Naturwissenschaften 87: 184–187.

    Article  Google Scholar 

  • Foucher, J., G. Westbrook, A. Boetius, S. Ceramicola, S. Dupré, J. Mascle, J. Mienert, O. Pfannkuche, C. Pierre, and D. Praeg. 2009. Structure and drivers of cold seep ecosystems. Oceanography 22: 92–109.

    Article  Google Scholar 

  • Frye, M., W. Shedd, and J. Schuenemeyer. 2013. Gas Hydrate resource assessment atlantic outer continental shelf. board of ocean energy management (BOEM) Report RED 2013-01, 57 pp.

    Google Scholar 

  • Fujii, T., K. Suzuki, T. Takayama, M. Tamaki, Y. Komatsu, Y. Konno, J. Yoneda, K. Yamamoto, and J. Nagao. 2015. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough. Japan. Marine and Petroleum Geology 66(1): 310–322. doi:10.1016/j.marpetgeo.2015.02.037.

    Article  Google Scholar 

  • ENI. 2016. Deep water. ENI energy company. http://www.eni.com/en_IT/innovation-technology/eni-projects/deep-water/deep-water-project.shtml. Accessed 23 Apr 2016.

  • Hachikubo, A., K. Yanagawa, H. Tomaru, H. Lu, and R. Matsumoto. 2015. Molecular and isotopic composition of volatiles in gas hydrates and in sediment from the Joetsu Basin, eastern margin of the Japan Sea. Energies, 4647–4666. doi:10.3390/en8064647.

    Google Scholar 

  • Henke, T., Muller, C., Marquardt, M., Hensen, C., et al. 2008. Integrated gas hydrate quantification of Nicoya Peninsula—Costa Rica. In Proceedings of the 6th international conference on gas hydrates (IGCH 2008), British Columbia, Canada: Vancouver, 6–10 July 2008.

    Google Scholar 

  • Holditch, S.A. 2013. Unconventional oil and gas resource development—Let’s do it right. Journal of Unconventional Oil and Gas Resources 1(2): 2–8. doi:10.1016/j.juogr.2013.05.001.

    Article  Google Scholar 

  • Hornbach, M.J., D.M. Saffer, and W.S. Holbrook. 2004. Critically pressured free-gas reservoirs below gas-hydrate provinces. Nature 427: 142–144.

    Article  Google Scholar 

  • Johnson, A.H. 2011. Global resource potential of gas hydrate—A new calculation. U.S. Department of Energy. Fire in the ice 11(2): 1–4.

    Google Scholar 

  • Johnson, A.H. 2012. Gas hydrate. In GEA, 2011: The global energy assessment. IIASA, 35–43. United Kingdom and New York, NY, USA: Laxenburg, Austria and Cambridge University Press, Cambridge.

    Google Scholar 

  • Johnson, J.E., J. Mienert, A. Plaza-Faverola, S. Vadakkepuliyambatta, J. Knies, S. Bünz, K. Andreassen, and B. Ferré. 2015. Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates. Geology 43(5): 371–374. doi:10.1130/G36440.

    Article  Google Scholar 

  • Johnson, J.E., K.A. Waghorn, J. Mienert, and S. Bünz. 2016. The potential for abiotic methane in arctic gas hydrates. U.S. Department of Energy. In Fire in the ice, 16(1): 9–12.

    Google Scholar 

  • Kashchiev, D., and A. Firoozabadi. 2002a. Nucleation of gas hydrates. Journal of Crystal Growth 243: 476–489.

    Article  Google Scholar 

  • Kashchiev, D., and A. Firoozabadi. 2002b. Driving force for crystallization of gas hydrates. Journal of Crystal Growth 241(1): 220–230.

    Article  Google Scholar 

  • Kliewer, G. 2015. Ultra-deepwater to capture most of Brazil’s offshore capex. Offshore 75(5): 46.

    Google Scholar 

  • Kvenvolden, K.A. 1988. Methane hydrate-a major reservoir of carbon in the shallow geosphere? Chemical Geology 71: 41–51.

    Article  Google Scholar 

  • Kvenvolden, K.A. 1995. A review of the geochemistry of methane in natural gas hydrate. Organic Geochemistry 23: 997–1008. doi:10.1016/0146-6380(96)00002-2.

    Article  Google Scholar 

  • Kvenvolden, K.A., and T.D. Lorenson. 2001. The global occurrence of natural gas hydrate. In Natural gas hydrates: Occurrence, distribution, and dynamics, ed. Paull, C.K. and W.P. Dillon, American Geophysical Union, Geophysical Monograph, 124: 3–18.

    Google Scholar 

  • Matsumoto, R., Tomaru, H., and Lu, H. 2004. Detection and evaluation of gas hydrate formation in the Eastern Nankai trough by geochemical and geophysical methods, Resource Geology 54: 53–68.

    Google Scholar 

  • Max, M.D. 1990. Gas hydrate and acoustically laminated sediments: Probable environmental cause of anomalously low acoustic-interaction bottom loss in deep ocean sediments. Naval Research Laboratory Report 9235, 68 pp.

    Google Scholar 

  • Max, M.D. (ed). 2003. Natural gas hydrate: In oceanic and permafrost environments, 2nd ed, 422 pp. London, Boston, Dordrecht: Kluwer Academic Publishers (now Springer).

    Google Scholar 

  • Max, M.D., and A.H. Johnson. 2011a. Methane hydrate/clathrate conversion. In Clean hydrocarbon fuel conversion technology ed. Khan, M.R, 413–434. Cambridge, U.K: Woodhead Publishing Series in Energy No. 19. Woodhead Publishing Ltd. (ISBN 1 84569 727 8, ISBN-13: 978 1 84569 727 3).

    Google Scholar 

  • Max, M.D. and A.H. Johnson. 2011b. Diagenetic methane hydrate formation in permafrost: A new gas play? 2011. Offshore technology conference. In Proceedings, OTC arctic technology conference, Houston, Texas, USA, 7–9 Feb, 7 pp.

    Google Scholar 

  • Max, M.D., and A.H. Johnson. 2014. Hydrate petroleum system approach to hydrate natural gas exploration. Petroleum Geoscience 20(2): 187–199. Geological Society of London (Published in Online First 21 March 2014). doi:10.1144/petgeo2012-049.

    Google Scholar 

  • Max, M.D., A.H. Johnson, and W.P. Dillon. 2006. Economic geology of natural gas hydrate. Berlin, Dordrecht: Springer, 341 pp.

    Google Scholar 

  • Max, M.D., A.H. Johnson, and W.P. Dillon. 2013. Natural gas hydrate arctic ocean deepwater resource potential springer briefs in energy, 113 pp.

    Google Scholar 

  • Max, M.D., and A. Lowrie. 1993. Natural gas hydrates: Arctic and Nordic Sea potential. In Arctic geology and petroleum potential, eds. T.O. Vorren, E. Bergsager, Ø.A. Dahl-Stamnes, E. Holter, B. Johansen, E. Lie, and T.B. Lund, 27–53. Amsterdam: Elsevier. Proceedings of the Norwegian petroleum society conference, 15–17 August 1990, Tromsø, Norway: Norwegian Petroleum Society (NPF), (Special Publication 2).

    Google Scholar 

  • Moridis, G.J., and M. Kowalsky. 2006. Gas production from unconfined Class 2 oceanic hydrate accumulations. In Natural gas hydrate: In oceanic and permafrost environments, 2nd ed, ed. M.D. Max. 2003, 249–266. London, Boston, Dordrecht: Kluwer Academic Publishers (now Springer).

    Google Scholar 

  • Noguchi, S., T. Furukawa, T.T. Aung, and N. Oikawa. 2011. Reservoir architecture of methane hydrate bearing turbidite channels in the eastern Nankai Trough, Japan. In Proceedings of the 7th international conference on gas hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, 17–21 July, 2011. 9 pp.

    Google Scholar 

  • NPC. 2007. Topic Paper #39 Unconventional Gas. Working document of the NPC Global Oil and Gas Study (July 18) Naptional Petroleum Council, U.S. Department of Energy. 54 pp.

    Google Scholar 

  • Paull, C.K., and W. Ussler. 2001. History and significance of gas sampling during DSDP and ODP drilling associated with gas hydrates. In Natural gas hydrates: Occurrence, distribution, and dynamics. eds. C.K. Paull, W.P. Dillon, and Geophysical Monograph, 124, AGU, 53–65.

    Google Scholar 

  • Paull, C.K., W. Ussler, and W.S. Borowski. 1994. Sources of biogenic methane to form as hydrates, in situ production or upward migration. In International conference on natural gas hydrates, annals NY academy of sciences 715, eds. E.D. Sloan, J. Happel, and M.A. Hnatow, 392–409.

    Google Scholar 

  • Paull, C.K., W.S. Borowski, and N.M. Rodriguez, and ODP Leg 164 Shipboard Scientific Party. 1998. Marine gas hydrate inventory: Preliminary results of ODP Leg 164 and implications for gas venting and slumping associated with the Blake Ridge gas hydrate field. In Gas hydrates: Relevance to world margin stability and climate change, eds. J.P. Henriet, and J. Mienert. Geological Society London Special Publication 137, 153–160.

    Google Scholar 

  • Pellenbarg, R.E., and M.D. Max. 2003. Chapter 1 introduction, physical properties, and natural occurrences of hydrate. In Natural gas hydrate: In oceanic and permafrost environments, 2nd ed, ed. M.D. Max, 1–8. London, Boston, Dordrecht: Kluwer Academic Publishers (now Springer).

    Google Scholar 

  • Pooladi-Darvish, M., Zatspeina, O., and Hong, H. 2008. Behavior of gas production from type III hydrate reservoirs. In Proceedings of the 6th international conference on gas hydrates (ICGH 2008), British Columbia, Canada: Vancouver, 6–10 July 2008, 11 pp.

    Google Scholar 

  • Rajan, A., J. Mienert, S. Bünz, and S. Chand. 2012. Potential serpentinization, degassing, and gas hydrate formation at a young (< 20 Ma) sedimented ocean crust of the Arctic Ocean ridge system. Journal of Geophysical Research 117: B03102. doi:10.1029/2011JB008537.

    Article  Google Scholar 

  • Rehder, G., S.H. Kirby, W.B. Durham, L.A. Stern, E.T. Peltzer, J. Pinkston, and P.G. Brewer. 2004. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth. Geochimica et CosmochemicaActa 68(2): 285–292.

    Article  Google Scholar 

  • Reichel, T., and J.W. Gallagher. 2015. Global screening of gas hydrates—how does the Arctic score? Abstract in program of 3P Arctic the polar petroleum potential conference and exhibition, Stavanger, Norway 29 September–2 October 2015, 92.

    Google Scholar 

  • Richardson, G.E., L.S. Leanne S. French, R.D. Baud, R.H. Peterson, C.D. Roark, T.M. Montgomery, G. Eric. E.G. Kazanis, G.M. Conner, and M.P. Gravois. 2004. Deepwater Gulf of Mexico 2004: America’s expanding frontier. offshore continental shelf Report MMS 2004-021. U.S. Department of the Interior, Minerals Management Service New Orleans, 151 pp.

    Google Scholar 

  • Richardson, G.E., L.D. Nixon, C.M. Bohannon, E.G. Kazanis, T.M. Montgomery, and M.P. Gravois. 2008. Deepwater Gulf of Mexico 2008: America’s offshore energy future. OCS Report MMS 2008-013. U.S. Department of the Interior, Minerals Management Service New Orleans, 103 pp.

    Google Scholar 

  • Rigzone, 2015. How does artificial lift work? Rigzone. http://www.rigzone.com/training/insight.asp?insight_id=315&c_id=4. Accessed 23 Apr 2016.

  • Sassen, R., and I.R. MacDonald. 1997. Thermogenic gas hydrates, Gulf of Mexico continental slope: Preprints, 213th ACS National Mtg, San Francisco, CA, 42(2): 472–474.

    Google Scholar 

  • Sassen, R., S.T. Sweet, A.V. Milkov, D.A. DeFreitas, and M.C. Kennicutt, II. 2001. Stability of thermogenic gas hydrate in the Gulf of Mexico: Constraints on models of climate change. In: Natural gas hydrates occurrence, distribution, and detection, eds. C.K. Paull, and W.P. Dillon, American Geophysical Union Geophysical Monograph, 124, 131–143.

    Google Scholar 

  • SBC. 2015. Natural gas series factbook, gas hydrates sbc energy institute (SBC-EI) Schlumberger, 99 pp. https://www.sbc.slb.com/~/media/Files/SBC%20Energy%20Institute/SBC%20Energy%20Institute_Gas%20Hydrates_FactBook.pdf. Accessed 4 Jan 2016.

  • Schlumberger. 2015. Integrated lifting solutions for enhanced well production. http://www.slb.com/services/production/artificial_lift.aspx. Accessed 23 Apr 2016.

  • Shell. 2015. Tapping into deep-water reservoirs. http://www.shell.com/global/aboutshell/major-projects-2/bc-10/technology.html. Accessed 23 Apr 2015.

  • Sloan, E.D. 1990. Clathrate hydrates of natural gases, New York: Marcel Dekker, 641 pp.

    Google Scholar 

  • Sloan, E.D., and C.A. Koh. 2008. Clathrate hydrates of natural gases, 3rd ed. Chemical industries series 119. Boca Raton, Abington: CRC Press, Taylor & Francis Group. 752 pp. (ISBN 9780849390784 - CAT# 9078).

    Google Scholar 

  • Smith, T. 2009. Gas hydrates—Not so unconventional. GEOExPro 6(2), 19 pp. http://www.geoexpro.com/articles/2009/02/gas-hydrates-not-so-unconventional.

  • Stern, L.A., S.H Kirby, B. William, W.B. Durham, S. Circone, and F. William, W.F. Waite. 2003. Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior. In Natural gas hydrate: In oceanic and permafrost environments, 2nd ed, ed. M.D. Max, 248–323. London, Boston, Berlin: Springer.

    Google Scholar 

  • Takahashi, H., and Y. Tsuji. 2005. Multi-well exploration program in 2004 for natural hydrate in the Nankai-Trough offshore Japan. OTC 17162. In 2005 offshore technology conference held in Houston, TX, U.S.A, 2–5 May 2005, 10 pp.

    Google Scholar 

  • Talukder, A.R. 2012. Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova 24: 255–272. doi:10.1111/j.1365-3121.2012.01066.x.

    Article  Google Scholar 

  • Total. 2016. Deep offshore reservoirs: Tapping growth. http://www.total.com/en/energies-expertise/oil-gas/exploration-production/strategic-sectors/deep-offshore/challenges/overcoming-harsh-conditions-ocean-deeps?%FFbw=kludge1%FF.

  • van der Walls, J.H. 1956. Statistical mechanics of clathrate compounds. Transactions of the Faraday Society 52: 184–193. doi:10.1039/TF9565200184.

    Article  Google Scholar 

  • Wood, D.A. 2015. Gas hydrate research advances steadily on multiple fronts: A collection of published research (2009–2015). Journal of Natural Gas Science and Engineering 24: A1–A8, http://dx.doi.org/10.1016/j.jngse.2015.04.019. Accessed 2 Mar 2016.

    Google Scholar 

  • Wood, W.T., and W.Y. Jung. 2008. Modeling the extent of earth’s marine methane hydrate cryosphere. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6–10, 2008, 8 pp. Image is a more detailed model supplied by Warren Wood to M.D. Max, with thanks.

    Google Scholar 

  • Wood, WT., J. Gardner, R.A. Hagen, R.B. Coffin, J.W. Pohlman, P.E. Hart, and D.R. Hutchinson. 2004. Modeling heat and fluid flux of seafloor mounds in the Gulf of Mexico (Abs.), In Proceedings 85(47) AGU fall meeting, San Francisco, ocean sciences general contributions: Gas hydrates I OS34B-08.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Max .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Max, M.D., Johnson, A.H. (2016). Economic Characteristics of Deepwater Natural Gas Hydrate. In: Exploration and Production of Oceanic Natural Gas Hydrate. Springer, Cham. https://doi.org/10.1007/978-3-319-43385-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43385-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43384-4

  • Online ISBN: 978-3-319-43385-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics