Skip to main content

Physiotherapy and Rehabilitation Management in Adult LVAD Patients

  • Chapter
  • First Online:
Mechanical Circulatory Support in End-Stage Heart Failure

Abstract

Increasing numbers of patients require implantation of permanent ventricular assist devices (VADs) for treatment of refractory end-stage heart failure [1, 2], as confirmed by surveys conducted in several European hospitals [3, 4]. VADs have been initially employed either as a bridge to recovery or bridge to transplantation [5]. It has been reported that 78% of VAD implants (between 2002 and 2004) have been used as bridge to transplantation, 11.9% as destination therapy, and 5.3% as bridge to recovery [6]: rehabilitation management, if we consider these data, would be centered on maintaining motor abilities in order to prepare patient for a future transplantation when VADs are used as bridge treatment. Such a trend is nowadays differing since, due to the donor crisis, VADs are increasingly used as destination therapy. Although this practice is widely experienced in end-stage heart failure populations, mortality remains high: appropriateness of enrollment criteria is determinant in order to avoid inappropriate patient selection. In this regard, it has been found that patient’s frailty reduce the left ventricular assist devices (LVADs) outcomes; mortality at 1 year after implantation is higher in frail patients when compared with not frails [7]. Earlier reviews examined indications for LVAD use, LVAD suitability, cost-effectiveness, and the utility of the devices when used to treat refractory end-stage heart disease [8–16]. VAD implantation is indicated in order to augment or replace left ventricle (LVAD), right ventricle (RVAD), or both ventricle (BiVAD) function [6]. Postoperative complications of physiotherapic interest are mainly represented by infections, bleeding, thromboembolic events, device malfunction, and depression [17]. Indeed, postoperative rehabilitation in VAD recipients does not substantially differ from common cardiac surgery patients, as the main goals are related to the treatment/prevention of postoperative pulmonary complications, in the early phase. One of the major differences between common surgery patients and LVAD recipients consists in the complexity of the preoperative general conditions, being LVAD patients more prone to physical deconditioning often determined by forced bed rest and physical inactivity. Another substantial difference concerns the safety issues related to the device management, either by patients or by those providing care, including caregivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamakawa M, Kyo S, Yamakawa S, Ono M, Kinugawa K, Nishimura T (2013) Destination therapy: the new gold standard treatment for heart failure patients with left ventricular assist devices. Gen Thorac Cardiovasc Surg 61(3):111–117

    Article  PubMed  Google Scholar 

  2. Potapov EV, Loforte A, Weng Y, Jurmann M, Pasic M, Drews T et al (2008) Experience with over 1000 implanted ventricular assist devices. J Card Surg 23(3):185–194

    Article  PubMed  Google Scholar 

  3. Strüber M, Sander K, Lahpor J, Ahn H, Litzler PY, Drakos SG et al (2008) HeartMate II left ventricular assist device; early European experience. Eur J Cardiothorac Surg 34(2):289–294

    Article  PubMed  Google Scholar 

  4. Lahpor J, Khaghani A, Hetzer R, Pavie A, Friedrich I, Sander K et al (2010) European results with a continuous-flow assist device for advanced heart-failure patients. Eur J Cardiothorac Surg 37(2):357–361

    PubMed  Google Scholar 

  5. Givertz MM (2011) Cardiology patients pages: ventricular assist devices: important information for patients and families. Circulation 124(12):e305–e311

    Article  PubMed  Google Scholar 

  6. Sorensen E (2007) Ventricular-assist devices and total artificial hearts. Biomed Instrum Technol 41(5):385–389

    Article  PubMed  Google Scholar 

  7. Dunlay SM, Park SJ, Joyce LD, Daly RC, Stulak JM, McNallan SM et al (2014) Frailty and outcomes after implantation of left ventricular assist device as destination therapy. J Heart Lung Transplant 33(4):359–365

    Article  PubMed  Google Scholar 

  8. Emin A, Rogers CA, Parameshwar J, Macgowan G, Taylor R, Yonan N et al (2013) Trends in long-term mechanical circulatory support for advanced heart failure in the UK. Eur J Heart Fail 15(10):1185–1193

    Article  PubMed  Google Scholar 

  9. Neyt M, Van den Bruel A, Smit Y, De Jonge N, Erasmus M, Van Dijk D et al (2013) Cost-effectiveness of continuous-flow ventricular assist devices. Int J Technol Assess Health Care 29(3):254–260

    Article  PubMed  Google Scholar 

  10. Moreno SG, Novielli N, Cooper NJ (2012) Cost-effectiveness of the implantable HeartMate II left ventricular assist device for patients awaiting heart transplantation. J Heart Lung Transplant 31(5):450–458

    Article  PubMed  Google Scholar 

  11. Rogers JG, Bostic RR, Tong KB, Adamson R, Russo M, Slaughter MS (2012) Cost-effectiveness analysis of continuous-flow left ventricular assist devices as destination therapy. Circ Heart Fail 5(1):10–16

    Article  PubMed  Google Scholar 

  12. Maltais S, Jaik NP, Feurer ID, Wigger MA, Disalvo TG, Schlendorf KH et al (2013) Mechanical circulatory support and heart transplantation: donor and recipient factors influencing graft survival. Ann Thorac Surg 96(4):1252–1258

    Article  PubMed  Google Scholar 

  13. Atluri P, Goldstone AB, Fairman AS, Macarthur JW, Shudo Y, Cohen JE et al (2013) Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg 96(3):857–863

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ammirati E, Oliva F, Colombo T, Botta L, Cipriani M, Cannata A et al (2013) Proposal for updated listing criteria for heart transplantation and indications to implant of left ventricular assist devices. G Ital Cardiol (Rome) 14(2):110–119

    Google Scholar 

  15. Carrel T, Englberger L, Martinelli MV, Takala J, Boesch C, Sigurdadottir V et al (2012) Continuous flow left ventricular assist devices: a valid option for heart failure patients. Swiss Med Wkly 142:w13701

    PubMed  Google Scholar 

  16. McDiarmid A, Gordon B, Wrightson N, Robinson-Smith N, Pillay T, Parry G et al (2013) Hemodynamic, echocardiographic, and exercise-related effects of the HeartWare left ventricular assist device in advanced heart failure. Congest Heart Fail 19(1):11–15

    Article  PubMed  Google Scholar 

  17. Nissinoff J, Tian F, Therattil M, Salvarrey RM, Lee SW (2011) Acute inpatient rehabilitation after left ventricular assist device implantation for congestive heart failure. PM R 3(6):586–589

    Article  PubMed  Google Scholar 

  18. Piepoli MF (2013) Exercise training in chronic heart failure: mechanisms and therapies. Neth Heart J 21(2):85–90

    Article  CAS  PubMed  Google Scholar 

  19. Taylor RS, Sagar VA, Davies FJ, Briscoe S, Coats AJ, Dalal H et al (2014) Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev 4:CD003331

    Google Scholar 

  20. Arcêncio L, Souza MD, Bortolin BS, Fernandes AC, Rodrigues AJ, Evora PR (2008) Pre-and postoperative care in cardiothoracic surgery: a physiotherapeutic approach. Rev Bras Cir Cardiovasc 23(3):400–410

    Article  PubMed  Google Scholar 

  21. Perme CS, Southard RE, Joyce DL, Noon GP, Loebe M (2006) Early mobilization of LVAD recipients who require prolonged mechanical ventilation. Tex Heart Inst J 33(2):130–133

    PubMed  PubMed Central  Google Scholar 

  22. Morrone TM, Buck LA, Catanese KA, Goldsmith RL, Cahalin LP, Oz MC et al (1996) Early progressive mobilization of patients with left ventricular assist devices is safe and optimizes recovery before heart transplantation. J Heart Lung Transplant 15(4):423–429

    CAS  PubMed  Google Scholar 

  23. Freeman R, Maley K (2013) Mobilization of intensive care cardiac surgery patients on mechanical circulatory support. Crit Care Nurs Q 36(1):73–88

    Article  PubMed  Google Scholar 

  24. Westerdahl E, Lindmark B, Eriksson T, Friberg O, Hedenstierna G, Tenling A (2005) Deep-breathing exercises reduce atelectasis and improve pulmonary function after coronary artery bypass surgery. Chest 128(5):3482–3488

    Article  PubMed  Google Scholar 

  25. Johnston CL, James R, Mackney JH (2013) The current use of positive expiratory pressure (PEP) therapy by public hospital physiotherapists in New South Wales. New Zealand J Physiother 41(3):88–93

    Google Scholar 

  26. Westerdahl E, Lindmark B, Almgren SO, Tenling A (2001) Chest physiotherapy after coronary artery bypass graft surgery: comparison of three different techniques. J Rehabil Med 33(2):79–84

    Article  CAS  PubMed  Google Scholar 

  27. D’agrosa-Boiteux MC, Geoffroy E, Dauphin N, Camilleri L, Eschalier R, Cuenin C et al (2014) Left ventricle assist device: rehabilitation and management programmes. Ann Cardiol Angeiol (Paris) 63(4):245–252

    Article  Google Scholar 

  28. Corrà U, Pistono M, Mezzani A, Gnemmi M, Tarro Genta F, Caruso R et al (2011) Cardiovascular Prevention and rehabilitation for patients with ventricular assist device. From exercise therapy to long-term therapy. Part I: exercise therapy. Monaldi Arch Chest Dis 76(1):27–32

    PubMed  Google Scholar 

  29. Fattirolli F, Bonacchi M, Burgisser C, Cellai T, Francini S, Valente S et al (2009) Cardiac rehabilitation of patients with left ventricular assist device as “destination therapy”. Monaldi Arch Chest Dis 72(4):190–199

    PubMed  Google Scholar 

  30. Hambrecht R, Niebauer J, Fiehn E, Kälberer B, Offner B, Hauer K et al (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25(6):1239–1249

    Article  CAS  PubMed  Google Scholar 

  31. Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD et al (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115(19):2497–2505

    Article  PubMed  Google Scholar 

  32. Reedy JE, Swartz MT, Lohmann DP, Moroney DA, Vaca KJ, McBride LR et al (1992) The importance of patient mobility with ventricular assist device support. ASAIO J 38(3):M151–M153

    Article  CAS  PubMed  Google Scholar 

  33. Wells CL (2013) Physical therapist management of patients with ventricular assist devices: key considerations for the acute care physical therapist. Phys Ther 93(2):266–278

    Article  PubMed  Google Scholar 

  34. Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA, Pagani FD et al (2010) Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 55(17):1826–1834

    Article  PubMed  Google Scholar 

  35. Anagnostakou V, Chatzimichail K, Dimopoulos S, Karatzanos E, Papazachou O, Tasoulis A et al (2011) Effects of interval cycle training with or without strength training on vascular reactivity in heart failure patients. J Card Fail 17(7):585–591

    Article  PubMed  Google Scholar 

  36. de Jonge N, Kirkels H, Lahpor JR, Klöpping C, Hulzebos EJ, de la Rivière AB et al (2001) Exercise performance in patients with end-stage heart failure after implantation of a left ventricular assist device and after heart transplantation: an outlook for permanent assisting? J Am Coll Cardiol 37(7):1794–1799

    Article  PubMed  Google Scholar 

  37. Haft J, Armstrong W, Dyke DB, Aaronson KD, Koelling TM, Farrar DJ et al (2007) Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices. Circulation 116(11 Suppl):I8–15

    PubMed  Google Scholar 

  38. Jakovljevic DG, Birks EJ, George RS, Trenell MI, Seferovic PM, Yacoub MH et al (2011) Relationship between peak cardiac pumping capability and selected exercise-derived prognostic indicators in patients treated with left ventricular assist devices. Eur J Heart Fail 13(9):992

    Article  PubMed  Google Scholar 

  39. Laoutaris ID, Dritsas A, Adamopoulos S, Manginas A, Gouziouta A, Kallistratos MS et al (2011) Benefits of physical training on exercise capacity, inspiratory muscle function, and quality of life in patients with ventricular assist devices long-term postimplantation. Eur J Cardiovasc Prev Rehabil 18(1):33–40

    PubMed  Google Scholar 

  40. Marko C, Danzinger G, Käferbäck M, Lackner T, Müller R, Zimpfer D et al (2014) Safety and efficacy of cardiac rehabilitation for patients with continuous flow left ventricular assist devices. Eur J Prev Cardiol 22(11):1378–1384

    Google Scholar 

  41. Pruijsten RV, Lok SI, Kirkels HH, Klöpping C, Lahpor JR, de Jonge N (2012) Functional and haemodynamic recovery after implantation of continuous-flow left ventricular assist devices in comparison with pulsatile left ventricular assist devices in patiens with end-stage heart failure. Eur J Heart Fail 14(3):319–325

    Article  PubMed  Google Scholar 

  42. Hayes K, Leet A, Bradley S, Holland A (2012) Effects of exercise training on exercise capacity and quality of life in patients with a left ventricular assist device: a preliminary randomized controlled trial. J Heart Lung Transplant 31(7):729–734

    Article  PubMed  Google Scholar 

  43. Karapolat H, Engin C, Eroglu M, Yagdi T, Zoghi M, Nalbantgil S et al (2013) Efficacy of the cardiac rehabilitation program in patients with end-stage heart failure, heart transplant patients, and left ventricular assist device recipients. Transplant Proc 45(9):3381–3385

    Article  CAS  PubMed  Google Scholar 

  44. Kerrigan DJ, Williams CT, Ehrman JK, Bronsteen K, Saval MA, Schairer JR et al (2013) Muscular strength and cardio respiratory fitness are associated with health status in patients with recently implanted continuous-flow LVADs. J Cardiopulm Rehabil Prev 33(6):396–400

    Article  PubMed  Google Scholar 

  45. Harrington D, Anker SD, Chua TP, Webb-Peploe KM, Ponikowski PP, Poole-Wilson PA et al (1997) Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol 30(7):1758–1764

    Article  CAS  PubMed  Google Scholar 

  46. Clark AL (2006) Origin and symptoms in chronic heart failure. Heart 92(1):12–16

    Article  CAS  PubMed  Google Scholar 

  47. Jaski BE, Lingle RJ, Kim J, Branch KR, Goldsmith R, Johnson MR et al (1999) Comparison of functional capacity in patients with end-stage heart failure following implantation of a left ventricular assist device versus heart transplantation: results of the experience with left ventricular assist device with exercise trial. J Heart Lung Transplant 18(11):1031–1040

    Article  CAS  PubMed  Google Scholar 

  48. Compostella L, Russo N, Setzu T, Bottio T, Compostella C, Tarzia V et al (2015) A practical review for cardiac rehabilitation professionals of continuous-flow left ventricular assist devices: historical and current perspectives. J Cardiopulm Rehabil Prev 35(5):301–311

    Article  PubMed  Google Scholar 

  49. Kugler C, Malehsa D, Schrader E, Tegtbur U, Guetzlaff E, Haverich A et al (2012) A multi-modal intervention in management of left ventricular assist device outpatients: dietary counselling, controlled exercise and psychosocial support. Eur J Cardiothorac Surg 42(6):1026–1032

    Article  PubMed  Google Scholar 

  50. Nguyen E, Stein J (2013) Functional outcomes of adults with left ventricular assist devices receiving inpatient rehabilitation. PM R 5(2):99–103

    Article  PubMed  Google Scholar 

  51. Alsara O, Reeves RK, Pyfferoen MD, Trenary TL, Engen DJ, Vitse ML et al (2014) Inpatient rehabilitation outcomes for patients receiving left ventricular assist device. Am J Phys Med Rehabil 93(10):860–868

    Article  PubMed  Google Scholar 

  52. Chu SK, McCormick Z, Hwang S, Sliwa JA, Rydberg L (2014) Outcomes of acute inpatient rehabilitation of patients with left ventricular assist devices. PM R 6(11):1008–1012

    Article  PubMed  Google Scholar 

  53. English ML, Speed J (2013) Effectiveness of acute inpatient rehabilitation after left ventricular assist device placement. Am J Phys Med Rehabil 92(7):621–626

    Article  PubMed  Google Scholar 

  54. Polastri M, Bacchi Reggiani ML, Cefarelli M, Jafrancesco G, Martin-Suarez S (2013) The distance walked daily as a post-operative measure after pulmonary endarterectomy. Int J Ther Rehabil 20(4):195–199

    Article  Google Scholar 

  55. Kohli HS, Canada J, Arena R, Tang DG, Peberdy MA, Harton S et al (2011) Exercise blood pressure response during assisted circulatory support: comparison of the total artificial [corrected] heart with a left ventricular assist device during rehabilitation. J Heart Lung Transplant 30(11):1207–1213

    Article  PubMed  Google Scholar 

  56. Hasin T, Topilsky Y, Kremers WK, Boilson BA, Schirger JA, Edwards BS et al (2012) Usefulness of the six-minute walk test after continuous axial flow left ventricular device implantation to predict survival. Am J Cardiol 110(9):1322–1328

    Article  PubMed  PubMed Central  Google Scholar 

  57. Busch JC, Lillou D, Wittig G, Bartsch P, Willemsen D, Oldridge N et al (2012) Resistance and balance training improves functional capacity in very old participants attending cardiac rehabilitation after coronary bypass surgery. J Am Geriatr Soc 60(12):2270–2276

    Article  PubMed  Google Scholar 

  58. Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148

    Article  CAS  PubMed  Google Scholar 

  59. Mkacher W, Mekki M, Tabka Z, Trabelsi Y (2015) Effect of 6 months of balance training during pulmonary rehabilitation in patients with COPD. J Cardiopulm Rehabil Prev 35(3):207–213

    Article  PubMed  Google Scholar 

  60. Berg KO, Wood-Dauphinee SL, Williams JI, Maki B (1992) Measuring balance in the elderly: validation of an instrument. Can J Public Health 83(suppl 2):S7–11

    PubMed  Google Scholar 

  61. Hurvitz EA, Richardson JK, Werner RA, Ruhl AM, Dixon MR (2000) Unipedal stance testing as an indicator of fall risk among older outpatients. Arch Phys Med Rehabil 81(5):587–591

    Article  CAS  PubMed  Google Scholar 

  62. Tinetti M (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34(2):119–126

    Article  CAS  PubMed  Google Scholar 

  63. Myers AM, Fletcher PC, Myers AH, Sherk W (1998) Discriminative and evaluative properties of the Activities-Specific Balance Confidence (ABC) scale. J Gerontol A Biol Sci Med Sci 53(4):M287–M294

    Article  CAS  PubMed  Google Scholar 

  64. Pistono M, Corrà U, Gnemmi M, Imparato A, Caruso R, Balestroni G et al (2011) Cardiovascular prevention and rehabilitation for patients with ventricular assist device from exercise therapy to long-term therapy. Part II: long-term therapy. Monaldi Arch Chest Dis 76(3):136–145

    PubMed  Google Scholar 

  65. Ueno A, Tomizawa Y (2009) Cardiac rehabilitation and artificial heart devices. J Artif Organs 12(2):90–97

    Article  PubMed  Google Scholar 

  66. Scheiderer R, Belden C, Schwab D, Haney C, Paz J (2013) Exercise guidelines for inpatients following ventricular assist device placement: a systematic review of the literature. Cardiopulm Phys Ther J 24(2):35–42

    PubMed  PubMed Central  Google Scholar 

  67. Compostella L, Russo N, Setzu T, Compostella C, Bellotto F (2014) Exercise performance of chronic heart failure patients in the early period of support by an axial-flow left ventricular assist device as destination therapy. Artif Organs 38(5):366–373

    Article  CAS  PubMed  Google Scholar 

  68. Wilson SR, Givertz MM, Stewart GC, Mudge GH (2009) Ventricular assist devices. The challenges of outpatient management. J Am Coll Cardiol 54(18):1647–1659

    Article  PubMed  Google Scholar 

  69. Corrà U, Pistono M, Piepoli MF, Giannuzzi P (2012) Ventricular assist device patients on the horizon of cardiovascular prevention and rehabilitation. Can we convert challenges into opportunities? Eur J Prev Cardiol 19(3):490–493

    Article  PubMed  Google Scholar 

  70. Alsara O, Perez-Terzic C, Squires RW, Dandamudi S, Miranda WR, Park SJ et al (2014) Is exercise training safe and beneficial in patients receiving left ventricular assist device therapy? J Cardiopulm Rehabil Prev 34(4):233–240

    Article  PubMed  Google Scholar 

  71. Wienbergen H, Hambrecht R (2012) Trainingstherapie bei kardiologischen Patienten (Sportkardiologie). Herz 37(5):486–492

    Article  CAS  PubMed  Google Scholar 

  72. Matlock DD (2012) Destination unknown: the ventricular assist device and the advance of technology. J Am Geriatr Soc 60(1):154–155

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mezzani A, Hamm LF, Jones AM, McBride PE, Moholdt T, Stone JA et al (2012) Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation, and the Canadian Association of Cardiac Rehabilitation. J Cardiopulm Rehabil Prev 32(6):327–350

    Article  PubMed  Google Scholar 

  74. Compostella L, Russo N, Setzu T, Covolo E, Vettore E, Iliceto S et al (2013) Effects of short-term exercise training at anaerobic threshold in patients with axial-flow left ventricular assist device. Eur J Prev Cardiol 20(Suppl 1):S30

    Google Scholar 

  75. Simon MA, Kormos RL, Gorcsan J 3rd, Dohi K, Winowich S, Stanford E et al (2005) Differential exercise performance on ventricular assist device support. J Heart Lung Transplant 24(10):1506–1512

    Article  PubMed  Google Scholar 

  76. Sénage T, Fèvrier D, Michel M, Pichot E, Duveau D, Tsui S et al (2014) A mock circulatory system to assess the performance of continuous-flow left ventricular assist devices (LVADs): does axial flow unload better than centrifugal LVAD? ASAIO J 60(2):140–147

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lalonde SD, Alba AC, Rigobon A, Ross HJ, Delgado DH, Billia F et al (2013) Clinical differences between continuous flow ventricular assist devices: a comparison between HeartMate II and HeartWare HVAD. J Card Surg 28(5):604–610

    Article  PubMed  Google Scholar 

  78. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):e240–e327

    Article  PubMed  Google Scholar 

  79. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT et al (2011) Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation 123(4):381–390

    Article  CAS  PubMed  Google Scholar 

  80. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD et al (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 29(4 Suppl):S1–39

    Article  PubMed  Google Scholar 

  81. Lampert BC, Eckert C, Weaver S, Scanion A, Lockard K, Allen C et al (2014) Blood pressure control in continuous flow left ventricular assist devices: efficacy and impact on adverse events. Ann Thorac Surg 97(1):139–146

    Article  PubMed  Google Scholar 

  82. Topilsky Y, Oh JK, Shah DK, Boilson BA, Schirger JA, Kushwaha SS et al (2011) Echocardiographic predictors of adverse outcomes after continuous left ventricular assist device implantation. JACC Cardiovasc Imaging 4(3):211–222

    Article  PubMed  Google Scholar 

  83. Compostella L, Russo N, Setzu T, Tursi V, Bottio T, Tarzia V et al (2013) Cardiac autonomic dysfunction in the early phase after left ventricular assist device implant: implications for surgery and follow-up. Int J Artif Organs 36(6):410–418

    PubMed  Google Scholar 

  84. Gardiwal A, Roentgen P, Luesebrink U, Koenig T, Klein G, Oswald H (2010) Left ventricular assist improves autonomic imbalance in patients with persistent myocardial dysfunction. Int J Artif Organs 33(12):851–855

    PubMed  Google Scholar 

  85. Tank J, Heusser K, Malehsa D, Hegemann K, Haufe S, Brinkmann J et al (2012) Patients with continuous-flow left ventricular assist devices provide insight in human baroreflex physiology. Hypertension 60(3):849–855

    Article  CAS  PubMed  Google Scholar 

  86. Gademan MG, Swenne CA, Verwey HF, van der Laarse A, Maan AC, van de Vooren H et al (2007) Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. J Card Fail 13(4):294–303

    Article  PubMed  Google Scholar 

  87. Hu SX, Keogh AM, Macdonald PS, Kotlyar E, Robson D, Harkess M et al (2013) Interaction between physical activity and continuous-flow left ventricular assist device function in outpatients. J Card Fail 19(3):169–175

    Article  CAS  PubMed  Google Scholar 

  88. Brassard P, Jensen AS, Nordsborg N, Gustafsson F, Møller JE, Hassager C et al (2011) Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device: constant versus increasing pump speed: a pilot study. Circ Heart Fail 4(5):554–560

    Article  PubMed  Google Scholar 

  89. Jakovljevic DG, George RS, Nunan D, Donovan G, Bougard RS, Yacoub MH et al (2010) The impact of acute reduction of continuous-flow left ventricular assist device support on cardiac and exercise performance. Heart 96(17):1390–1395

    Article  PubMed  Google Scholar 

  90. Noor MR, Bowles C, Banner NR (2012) Relationship between pump speed and exercise capacity during HeartMate II left ventricular assist device support: influence of residual left ventricular function. Eur J Heart Fail 14(6):613–620

    Article  PubMed  Google Scholar 

  91. Jung MH, Hansen PB, Sander K, Olsen PS, Rossing K, Boesgaard S et al (2014) Effect of increasing pump speed during exercise on peak oxygen uptake in heart failure patients supported with a continuous-flow left ventricular assist device. A double-blind randomized study. Eur J Heart Fail 16(4):403–408

    Article  CAS  PubMed  Google Scholar 

  92. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA et al (2013) Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant 32(2):141–156

    Article  PubMed  Google Scholar 

  93. Vollkron M, Voitl P, Ta J, Wieselthaler G, Schima H (2007) Suction events during left ventricular support and ventricular arrhythmias. J Heart Lung Transplant 26(8):819–825

    Article  PubMed  Google Scholar 

  94. Boilson BA, Durham LA, Park SJ (2012) Ventricular fibrillation in an ambulatory patient supported by a left ventricular assist device: highlighting the ICD controversy. ASAIO J 58(2):170–173

    PubMed  Google Scholar 

  95. Sims DB, Rosner G, Uriel N, González-Costello J, Ehlert FA, Jorde UP (2012) Twelve hours of sustained ventricular fibrillation supported by a continuous-flow left ventricular assist device. Pacing Clin Electrophysiol 35(5):e144–e148

    Article  PubMed  Google Scholar 

  96. Enriquez AD, Calenda B, Miller MA, Anyanwu AC, Pinney SP (2013) The role of implantable cardioverter-defibrillators in patients with continuous flow left ventricular assist devices. Circ Arrhythm Electrophysiol 6(4):668–674

    Article  CAS  PubMed  Google Scholar 

  97. Garan AR, Yuzefpolskaya M, Colombo PC, Morrow JP, Te-Frey R, Dano D et al (2013) Ventricular arrhythmias and implantable cardioverter-defibrillator therapy in patients with continuous-flow left ventricular assist devices: need for primary prevention? J Am Coll Cardiol 61(25):2542–2550

    Article  PubMed  Google Scholar 

  98. Raasch H, Jensen BC, Chang PP, Mounsey JP, Gehi AK, Chung EH et al (2012) Epidemiology, management, and outcomes of sustained ventricular arrhythmias after continuous-flow left ventricular assist device implantation. Am Heart J 164(3):373–378

    Article  PubMed  Google Scholar 

  99. Felix SE, Martina JR, Kirkels JH, Klöpping C, Nathoe H, Sukkel E et al (2012) Continuous-flow left ventricular assist device support in patients with advanced heart failure: points of interest for the daily management. Eur J Heart Fail 14(4):351–356

    Article  CAS  PubMed  Google Scholar 

  100. Boyle A (2012) Arrhythmias in patients with ventricular assist devices. Curr Opin Cardiol 27(1):13–18

    Article  PubMed  Google Scholar 

  101. Hottigoudar RU, Deam AG, Birks EJ, McCants KC, Slaughter MS, Gopinathannair R (2013) Catheter ablation of atrial flutter in patients with left ventricular assist device improves symptoms of right heart failure. Congest Heart Fail 19(4):165–171

    Article  PubMed  Google Scholar 

  102. Stulak JM, Deo S, Schirger J, Aaronson KD, Park SJ, Joyce LD et al (2013) Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation. Ann Thorac Surg 96(6):2161–2167

    Article  PubMed  Google Scholar 

  103. Ades PA, Keteyian SJ, Balady GJ, Houston-Miller N, Kitzman DW, Mancini DM et al (2013) Cardiac rehabilitation exercise and self-care for chronic heart failure. JACC Heart Fail 1(6):540–547

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nishimura M, Radovancevic B, Odegaard P, Myers T, Springer W, Frazier OH (1996) Exercise capacity recovers slowly but fully in patients with a left ventricular assist device. ASAIO J 42(5):M568–M570

    Article  CAS  PubMed  Google Scholar 

  105. Grapow MT, Todorov A, Bernet F, Zerkowski HR (2003) Ambulatory long-term management of a left ventricular assist device. Current modality in terminal heart failure. Swiss Surg 9(1):27–30

    Article  CAS  PubMed  Google Scholar 

  106. Park WH, Seo YG, Sung JD (2014) Exercise therapy for an older patient with left ventricular assist device. Ann Rehabil Med 38(3):396–400

    Article  PubMed  PubMed Central  Google Scholar 

  107. Leibner ES, Cysyk J, Eleuteri K, El-Banayosy A, Boehmer JP, Pae WE (2013) Changes in the functional status measures of heart failure patients with mechanical assist devices. ASAIO J 59(2):117–122

    Article  PubMed  Google Scholar 

  108. Dunlay SM, Allison TG, Pereira NL (2014) Changes in cardiopulmonary exercise testing parameters following continuous flow left ventricular assist device implantation and heart transplantation. J Card Fail 20(8):548–554

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jakovljevic DG, McDiarmid A, Hallsworth K, Seferovic PM, Ninkovic VM, Parry G et al (2014) Effect of left ventricular assist device implantation and heart transplantation on habitual physical activity and quality of life. Am J Cardiol 114(1):88–93

    Article  PubMed  PubMed Central  Google Scholar 

  110. Munro J, Angus N, Leslie SJ (2013) Patient focused Internet-based approaches to cardiovascular rehabilitation–a systematic review. J Telemed Telecare 19(6):347–353

    Article  PubMed  Google Scholar 

  111. Antypas K, Wangberg SC (2014) An Internet- and mobile-based tailored intervention to enhance maintenance of physical activity after cardiac rehabilitation: short-term results of a randomized controlled trial. J Med Internet Res 16(3):e77

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kraal JJ, Peek N, Van den Akker-Van Marle ME, Kemps HM (2014) Effects of home-based training with telemonitoring guidance in low to moderate risk patients entering cardiac rehabilitation: short-term results of the FIT@Home study. Eur J Prev Cardiol 21(2 Suppl):26–31

    Article  PubMed  Google Scholar 

  113. Corazza I, Bianchini D, Urbinati S, Zannoli R (2014) REHAL©, a telemedicine platform for home cardiac rehabilitation. Minerva Cardioangiol 62(5):399–405

    CAS  PubMed  Google Scholar 

  114. Hernández C, Alonso A, Garcia-Aymerich J, Grimsmo A, Vontetsianos T, Garcia Cuyàs F et al (2015) Integrated care services: lessons learned from the deployment of the NEXES project. Int J Integr Care 15:e006

    PubMed  PubMed Central  Google Scholar 

  115. Polastri M, Loforte A (2015) Influence of ventricular assist devices equipment wear on body posture. Artif Organs 39(7):640–641

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Compostella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Compostella, L., Polastri, M., Lamotte, M., Bellotto, F., Antoine, M. (2017). Physiotherapy and Rehabilitation Management in Adult LVAD Patients. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics