Skip to main content

Physiopathology and Fate of End-Stage CHF in the Era of MCS

  • Chapter
  • First Online:
Mechanical Circulatory Support in End-Stage Heart Failure

Abstract

Heart failure is a clinical syndrome with different etiologies and quite variable presentation. The acute onset can be due to exacerbation of signs and symptoms of known HF (acute decompensated heart failure) or to the sudden appearance of HF in a patient with previous normal cardiac function (new-onset or de novo HF), as it happens after myocardial infarction or myocarditis. In chronic HF symptoms of ventricular dysfunction occur in a time span of weeks or months, generally caused by long-lasting ischemic heart disease, dilated cardiomyopathies, and hypertensive and valvular disease. With the advent of echocardiography, HF has been classified into two major subclasses: (1) heart failure with reduced ejection fraction (HFrEF), also called systolic heart failure, and (2) heart failure with preserved ejection fraction (HFpEF), also known as diastolic heart failure. The prevalence of heart failure increases rapidly with age. The Framingham Heart Study showed a prevalence of 8/1000 and up to 66/100 in 50–59 and 80–89 aged men, respectively [1]. In women, the prevalence of cardiac insufficiency was 8/1000 for the age group of 50–59 years and 7/1000 for age between 80 and 89 years. The incidence has similar trends, doubling for each subsequent decade of life. There are several reasons for this increase: the aging of the population, the improved efficacy of treatment of acute coronary syndromes with prolonged life span expectancy, and the significant increase of diabetes and obesity. As consequence the hospitalizations are progressively raising, due not only to the occurrence of worsening symptoms but also to comorbidities such as renal failure, electrolyte abnormalities, and multiorgan dysfunction. Risk factors for heart failure are age, sex, hypertension, diabetes, obesity, coronary artery disease, insulin resistance, genetic factors, and use of cardiotoxic drugs. In the SOLVD registry, 70% of patients suffering from heart failure had coronary heart disease and 7% hypertensive disease [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho KK, Pinsky JL, Kannel WB et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22:6A–13A

    Article  CAS  PubMed  Google Scholar 

  2. Bourassa MG, Gurne O, Bangdiwala SI et al (1993) Natural history and patterns of current practice in heart failure. The Studies of Left Ventricular Dysfunction (SOLVD) Investigators. J Am Coll Cardiol 22:14A–19A

    Article  CAS  PubMed  Google Scholar 

  3. Konstam MA (2003) Systolic and diastolic dysfunction in heart failure? Time for a new paradigm. J Card Fail 9:1–3

    Article  PubMed  Google Scholar 

  4. Aurigemma GP, Zile MR, Gaasch WH (2006) Contractile behavior of the left ventricle in diastolic heart failure with emphasis on regional systolic function. Circulation 113:296–304

    Article  PubMed  Google Scholar 

  5. Swedberg K, Viquerat C, Rouleau JL et al (1984) Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without heart failure. Am J Cardiol 54:783–786

    Article  CAS  PubMed  Google Scholar 

  6. Hasking GL, Esler MD, Jennings GL et al (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621

    Article  CAS  PubMed  Google Scholar 

  7. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis and measurements of diastolic function. Circulation 105:1387–1393

    Article  PubMed  Google Scholar 

  8. Quinones MA, Zile MR, Massie BM et al (2006) Chronic heart failure: a report from the Dartmouth Diastolic Discourses. Congest Heart Fail 12:162–165

    Article  PubMed  Google Scholar 

  9. van Heerebeek L, Borbely A, Niessen HW et al (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1975

    Article  PubMed  Google Scholar 

  10. Klitzmann DW, Little WC, Brubaker PH et al (2002) Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288:2144–2150

    Article  Google Scholar 

  11. Mak GJ, Ledwidge MT, Watson CJ et al (2009) Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone. J Am Coll Cardiol 54:1674–1682

    Article  CAS  PubMed  Google Scholar 

  12. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure – abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959

    Article  CAS  PubMed  Google Scholar 

  13. Wachter R, Schmidt-Schweda S, Westermann D et al (2009) Blunted frequency-dependent upregulation of cardiac output is related to impaired relaxation in diastolic heart failure. Eur Heart J 30:3027–3036

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paulus WJ, Tschope C, Sanderson JE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550

    Article  PubMed  Google Scholar 

  15. Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193

    Article  PubMed  Google Scholar 

  16. D’Alto M, Romeo E, Argiento P et al (2015) Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. J Am Soc Echocardiogr 28:108–115

    Article  PubMed  Google Scholar 

  17. Arkles JS, Opotowsky AR, Ojeda J et al (2011) Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med 183:268–276

    Article  PubMed  Google Scholar 

  18. Ronco C, House AA, Haapio M (2008) Cardiorenal syndrome. Refining the definition of a complex simbiosi gone wrong. Intensive Care Med 34:957–962 (Liang KV, Williams AW, Greene EL, et al. Acute decompensated heart failure and the cardiorenal syndrome. Crit Care Med. 2008;36:s75–88)

    Article  PubMed  Google Scholar 

  19. Mebazaa A, Gheorghiade M, Pina IL et al (2008) Practical recommendations for prehospital and early in-hospital management of patients presenting with acute heart failure syndrome. Crit Care Med 36:S129–S139

    Article  PubMed  Google Scholar 

  20. Bongartz LG, Cramer MJ, Doevendans PA et al (2005) The severe cardiorenal syndrome: “Guyton revisited”. Eur Heart J 26:11–17

    Article  PubMed  Google Scholar 

  21. Khot UN, Mishra M, Yamami MH et al (2003) Severe renal dysfunction complicating cardiogenic shock is not a contraindication to mechanical support as bridge to cardiac transplantation. J Am Coll Cardiol 41:381–385

    Article  PubMed  Google Scholar 

  22. Damman K, Navis G, Smilde TDJ et al (2007) Decreased output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail 9:872–878

    Article  PubMed  Google Scholar 

  23. Nohria J, Hasselblad V, Stebbins A et al (2008) Cardiorenal interactions. Insights from the ESCAPE trial. J Am Coll Cardiol 51:1268–1274

    Article  PubMed  Google Scholar 

  24. Damman K, van Deursen VM, Navis GN et al (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53:582–588

    Article  PubMed  Google Scholar 

  25. Muellens W, Abrahams Z, Francis G et al (2009) Importance of venous congestion for worsening renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596

    Article  Google Scholar 

  26. Uthoff H, Breidthardt T, Klima T et al (2011) Central venous pressure and impaired renal function in patients with acute heart failure. Eur J Heart Fail 13:432–439

    Article  PubMed  Google Scholar 

  27. Testani MJ, Chen J, McCauley BD, Kimmel SE, Shannon RE (2010) Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122:265–272

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abildgaard U, Agerskov K, Sjontoft E et al (1987) renal vascular adjustments to partial renal venous obstruction in dog kidney. Circ Res 61:194–202

    Article  CAS  PubMed  Google Scholar 

  29. Muellens W, Abrahams Z, Skouri HN et al (2008) Elevated intra-abdominal pressure in acute decompensated heart failure. J Am Coll Cardiol 51:300–306

    Article  Google Scholar 

  30. Bourge RC, Abraham WT, Adamson PB et al (2008) randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure. J Am Coll Cardiol 51:1073–1079

    Article  PubMed  Google Scholar 

  31. Adamson PB, Abraham WT, Stevenson L et al (2016) Pulmonary artery pressure-guided heart failure management reduces 30-day readmissions. Circ Heart Fail 9:e002600

    Article  PubMed  Google Scholar 

  32. Gheorghiade M, Filippatos G, De Luca L et al (2006) Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med 119:S3–S10

    Article  PubMed  Google Scholar 

  33. Cotter G, Metra M, Milo-Cotter O et al (2008) Fluid overload in acute heart failure – Re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail 10:165–169

    Article  PubMed  Google Scholar 

  34. Greyson CR (2008) Pathophysiology of right ventricular failure. Crit Care Med 36:S57–S65

    Article  PubMed  Google Scholar 

  35. Richardson PDI (1982) Physiological regulation of the hepatic circulation. Fed Proc 41:2111–2116

    CAS  PubMed  Google Scholar 

  36. Sherlock S (1951) The liver in heart failure: relation of anatomical, functional and circulatory changes. Br Heart J 13:273–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verbrugge FH, Dupont M, Steels P et al (2013) Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 62:485–495

    Article  PubMed  Google Scholar 

  38. Mailman D (1982) Blood flow and intestinal absorption. Fed Proc 41:2096–2100

    CAS  PubMed  Google Scholar 

  39. Chou CC, Gallavan RH (1982) Blood flow and intestinal motility. Fed Proc 41:2090–2095

    CAS  PubMed  Google Scholar 

  40. Peschel T, Schonauer M, Thiele H et al (2003) Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail 5:609–614

    Article  CAS  PubMed  Google Scholar 

  41. Sandek A, Bauditz J, Swidinski A et al (2007) Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 50:1561–1569

    Article  CAS  PubMed  Google Scholar 

  42. Valentova M, von Haehling S, Bauditz J et al (2016) Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J 37:1684–1691

    Article  PubMed  Google Scholar 

  43. Agricola A, Ielasi A, Oppizzi M et al (2009) Long-term prognosis of medically treated patients with functional mitral regurgitation and left ventricular dysfunction. Eur J Heart Fail 11:581–587

    Article  PubMed  Google Scholar 

  44. Siu FY, Enriquez-Sarano TC et al (2000) Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction. Circulation 102:1400–1406

    Article  Google Scholar 

  45. Enriquez-Sarano M, Rossi A, Seward JB et al (1997) Determinants of pulmonary hypertension in left ventricular dysfunction. J Am Coll Cardiol 29:153–159

    Article  CAS  PubMed  Google Scholar 

  46. Rosenkranz S, Gibbs JS, Wacher R et al (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954

    Article  PubMed  Google Scholar 

  47. Guazzi M, Borlaug BA (2012) Pulmonary hypertension due to left heart disease. Circulation 126:975–990

    Article  PubMed  Google Scholar 

  48. Naeje R, Vachiery JL, Yerly P et al (2013) The transpulmonary pressure gradient for the diagnosis of pulmonary vascular disease. Eur J Respir Dis 41:217–223

    Article  Google Scholar 

  49. Harvey R, Enson Y, Ferrer IM (1971) A reconsideration on the origins of pulmonary hypertension. Chest 59:82–94

    Article  CAS  PubMed  Google Scholar 

  50. Tampakis E, Leary PJ, Van N (2015) Selby et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail 3:9–16

    Article  Google Scholar 

  51. Lankhaar JW, Westerhof N, Faes TJC et al (2006) Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol 291:H1731–H1737

    Article  CAS  PubMed  Google Scholar 

  52. Saouti N, Westerhof N, Helderman F et al (2010) Right ventricular oscillatory power is a constant fraction of total power irrespective of pulmonary artery pressure. Am J Respir Crit Care Med 182:1315–1320

    Article  PubMed  Google Scholar 

  53. Tedford RJ, Hassoun PM, Mathai SC et al (2012) Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation 145:289–297

    Article  Google Scholar 

  54. Pellegrini P, Rossi A, Pasotti M et al (2014) Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest 145:1064–1070

    Article  PubMed  Google Scholar 

  55. Dupont M, Mullens W, Skouri HN et al (2012) Prognostic role of pulmonary artery capacitance in advanced heart failure. Circ Heart Fail 5:778–785

    Article  PubMed  PubMed Central  Google Scholar 

  56. Georgiopoulou VV, Kalogeropoulos P, Borlaug BA et al (2013) Left ventricular dysfunction with pulmonary hypertension. Part 1: epidemiology, pathophysiology and definitions. Circ Heart Fail 6:344–354

    Article  PubMed  Google Scholar 

  57. Ghio S, Gavazzi A, Campana C et al (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37:387–388

    Article  Google Scholar 

  58. Ghio S, Temporelli PL, Klersy C et al (2013) Prognostic relevance of a noninvasive evaluation of right ventricular pressure in patients with chronic heart failure. Eur J Heart Fail 15:408–414

    Article  PubMed  Google Scholar 

  59. Cowger Matthews J, Koelling TM, Pagani FJ et al (2008) The right ventricular risk score. J Am Coll Cardiol 51:2163–2172

    Article  Google Scholar 

  60. Kang G, Ha R, Banerjee D (2016) Pulmonary artery pulsatility index predicts right ventricular assist device implantation. J Heart Lung Transplant 35:67–73

    Article  PubMed  Google Scholar 

  61. Robbins IM, Hemnes AR, Pugh ME et al (2014) High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension. Circ Heart Fail 7:116–122

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Piazza MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piazza, V., Montalto, A., Amarelli, C., Loforte, A., Musumeci, F. (2017). Physiopathology and Fate of End-Stage CHF in the Era of MCS. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics