Skip to main content

Low INTERMACS Profiles: One-Stage Durable LVAD Implantation for INTERMACS Level 1: Indications and Contraindications

  • Chapter
  • First Online:
Mechanical Circulatory Support in End-Stage Heart Failure
  • 1815 Accesses

Abstract

Left ventricular assist devices (LVADs) have become the standard of care for patients with end-stage heart failure as a bridge-to-transplant (BTT) therapy [1] and as a destination therapy (DT) [2]. Over the past decade, numbers of LVAD implants in North America have grown exponentially, with over 15,000 patients undergoing LVAD implantation with continuous-flow LVAD. Approval of DT and other studies have accelerated the shift of timing of LVAD implantation to more ambulatory patients with heart failure in several years [3]. However, in the seventh annual Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) report, about 15% of all patients with INTERMACS profile 1 underwent LVAD implantation, and this rate has not changed in the past several years [4]. Therefore, it is important to discuss about the treatment strategy for patients at the INTERMACS level 1. The major problems of patients at the INTERMACS level 1 include not only decompensated hemodynamic condition but also other organ dysfunction or uncertified neurological status. At the first encounter for patients with cardiogenic shock, candidacy for DT or BTT LVAD is often unclear. In addition, because of the severity of their illness, the time to make a decision is very limited. Therefore, an alternative approach instead of primary implantable LVAD insertion may be considered using short-term mechanical circulatory support (MCS) for patients at the INTERMACS level 1. This treatment strategy is considered as a bridge-to-decision therapy. The merit of this strategy is that stabilization of hemodynamics and improvement of organ function can be achieved before long-term durable LVAD implantation. We reported favorable outcomes with CentriMag (Thoratec Co., Pleasanton, CA) VAD usage in patients with cardiogenic shock [5]. Moreover, recent advances in technology enable us to implant percutaneous short-term VADs such as extracorporeal membrane oxygenation (ECMO) and Impella (Abiomed, Danvers, MA). Percutaneous MCS devices can be less invasively implanted and are especially applicable for salvage treatment in critically ill cases [6]. This staged procedure has potential benefits to restore hemodynamic instability and end-organ function and may improve outcomes following definitive surgeries [7]. On the other hand, there remain several concerns in the bridge-to-decision strategy. Patients require a second intervention in cases which require subsequent implantable LVAD insertion. The second surgery after surgical short-term VAD requires adhesive dissection and more transfusions. Moreover, bridge-to-bridge surgery imposes increasing risk of device infection on patients [8]. In addition, bridging strategy using multiple MCS devices could increase medical cost and impose prolonged hospital stay. Thus, one-stage durable LVAD implantation is possibly advantageous with regards to cost and adverse consequences associated by multiple interventions. No studies have been conducted comparing outcomes between two strategies in INTERMACS 1 patients. Nonetheless, utmost careful attention must be paid for appropriate patient selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896

    Article  CAS  PubMed  Google Scholar 

  2. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443

    Google Scholar 

  3. Estep JD, Starling RC, Horstmanshof DA, Milano CA, Selzman CH, Shah KB et al (2015) Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: results from the ROADMAP study. J Am Coll Cardiol 66:1747–1761

    Article  PubMed  Google Scholar 

  4. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transp 34:1495–1504

    Article  Google Scholar 

  5. Takayama H, Soni L, Kalesan B, Truby LK, Ota T, Cedola S et al (2014) Bridge-to-decision therapy with a continuous-flow external ventricular assist device in refractory cardiogenic shock of various causes. Circ Heart Fail 7:799–806

    Article  PubMed  PubMed Central  Google Scholar 

  6. Truby L, Mundy L, Kalesan B, Kirtane A, Colombo PC, Takeda K et al (2015) Contemporary outcomes of venoarterial extracorporeal membrane oxygenation for refractory cardiogenic shock at a large tertiary care center. ASAIO J 61:403–409

    Article  CAS  PubMed  Google Scholar 

  7. Takayama H, Soni L, Kalesan B, Truby LK, Ota T, Cedola S et al (2014) Bridge-to-decision therapy with a continuous-flow external ventricular assist device in refractory cardiogenic shock of various causes. Circ Heart Fail. 7:799–806

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoshioka D, Sakaguchi T, Saito S, Miyagawa S, Nishi H, Yoshikawa Y et al (2012) Initial experience of conversion of Toyobo paracorporeal left ventricular assist device to DuraHeart left ventricular assist device. Circ J 76:372–376

    Article  PubMed  Google Scholar 

  9. McCarthy RE 3rd, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Hare JM et al (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 342:690–695

    Article  PubMed  Google Scholar 

  10. Diddle JW, Almodovar MC, Rajagopal SK, Rycus PT, Thiagarajan RR (2015) Extracorporeal membrane oxygenation for the support of adults with acute myocarditis. Crit Care Med 43:1016–1025

    Article  CAS  PubMed  Google Scholar 

  11. Lorusso R, Centofanti P, Gelsomino S, Barili F, Di Mauro M, Orlando P et al (2015) Venoarterial extracorporeal membrane oxygenation for acute fulminant myocarditis in adult patients: a 5-year multi-institutional experience. Ann Thorac Surg 27:S0003–S4975. (15)01375-2

    Google Scholar 

  12. Mody KP, Takayama H, Landes E, Yuzefpolskaya M, Colombo PC, Naka Y et al (2014) Acute mechanical circulatory support for fulminant myocarditis complicated by cardiogenic shock. J Cardiovasc Transl Res 7:156–164

    Article  PubMed  Google Scholar 

  13. Pawale A, Pinney S, Ashley K, Flynn R, Milla F, Anyanwu AC (2013) Implantable left ventricular assist devices as initial therapy for refractory postmyocardial infarction cardiogenic shock. Eur J Cardiothorac Surg 44:213–216

    Article  PubMed  Google Scholar 

  14. Dang NC, Topkara VK, Leacche M, John R, Byrne JG, Naka Y (2005) Left ventricular assist device implantation after acute anterior wall myocardial infarction and cardiogenic shock: a two-center study. J Thorac Cardiovasc Surg 130:693–698

    Article  PubMed  Google Scholar 

  15. Yoshioka D, Sakaguchi T, Saito S, Miyagawa S, Nishi H, Yoshikawa Y et al (2012) Predictor of early mortality for severe heart failure patients with left ventricular assist device implantation: significance of INTERMACS level and renal function. Circ J 76:1631–1638

    Article  PubMed  Google Scholar 

  16. Klotz S, Vahlhaus C, Riehl C, Reitz C, Sindermann JR, Scheld HH (2010) Pre-operative prediction of post-VAD implant mortality using easily accessible clinical parameters. J Heart Lung Transplant. 29(1):45–52

    Article  PubMed  Google Scholar 

  17. Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA et al (2007) Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation 116:497–505

    Article  PubMed  Google Scholar 

  18. Sandner SE, Zimpfer D, Zrunek P, Rajek A, Schima H, Dunkler D, Grimm M, Wolner E, Wieselthaler GM (2009) Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg 87:1072–1078

    Article  PubMed  Google Scholar 

  19. Butler J, Geisberg C, Howser R, Portner PM, Rogers JG, Deng MC et al (2006) Relationship between renal function and left ventricular assist device use. Ann Thorac Surg 81:1745–1751

    Article  PubMed  Google Scholar 

  20. Leidenfrost J, Prasad S, Itoh A, Lawrance CP, Bell JM, Silvestry SC (2016) Right ventricular assist device with membrane oxygenator support for right ventricular failure following implantable left ventricular assist device placement. Eur J Cardiothorac Surg 49:73–77

    Article  PubMed  Google Scholar 

  21. Cowger J, Sundareswaran K, Rogers JG, Park SJ, Pagani FD, Bhat G et al (2013) Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol 61(3):313–321

    Article  CAS  PubMed  Google Scholar 

  22. Adamo L, Nassif M, Tibrewala A, Novak E, Vader J, Silvestry SC et al (2015) The heartmate risk score predicts morbidity and mortality in unselected left ventricular assist device recipients and risk stratifies INTERMACS class 1 patients. JACC Heart Fail 3:283–290

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saito S, Matsumiya G, Sakaguchi T, Miyagawa S, Yoshikawa Y, Yamauchi T et al (2010) Risk factor analysis of long-term support with left ventricular assist system. Circ J 74:715–722

    Article  PubMed  Google Scholar 

  24. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW et al (2010) Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139:1316–1324

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yoshioka, D., Takeda, K., Takayama, H., Naka, Y. (2017). Low INTERMACS Profiles: One-Stage Durable LVAD Implantation for INTERMACS Level 1: Indications and Contraindications. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics