Focal Segmental Glomerulosclerosis and Its Pathophysiology



Focal segmental glomerulosclerosis, or FSGS, is a proteinuric kidney disease named based on the pattern of scarring seen on a kidney biopsy which can result from many different causes/reasons. FSGS has become the most common primary glomerular disease leading to end-stage kidney disease in the United States and is observed in approximately one-third of biopsies done for idiopathic nephrotic syndrome (Appel and D’Agati, Comprehensive clinical nephrology, 5th edn, 2015, pp. 218–230; D’Agati et al., N Engl J Med 365(25):2398–2411, 2011; Korbet, J Am Soc Nephrol 23(11):1769–1776, 2012). There is still much we do not know about the disease process as a whole, yet our understanding of how a similar final pattern of injury can develop from a multitude of etiologies has expanded. Due to the number of causes for FSGS and our ever expanding knowledge of this disorder, determining the reason for the disease and providing appropriate treatment remains a challenge.

In this chapter, we will discuss the known causes for this disease and how they are believed to lead to a similar pattern of injury. We will also define the histological types of FSGS and how they can help determine the cause of the injury. Finally, we will describe the clinical features of this disease and discuss potential treatment options.


FSGS Proteinuria Genetic mutations Histologic subtype Immunosuppression 



Angiotensin converting enzyme inhibitor


Apolipoprotein L1


Angiotensin receptor blocker


Blood pressure


Cardiotrophin-like cytokine 1


Calcineurin inhibitor


Coenzyme Q


End stage renal disease


Focal segmental glomerulosclerosis


Heroin associated nephropathy


Human immunodeficiency virus associated nephropathy


Kidney disease improving global outcomes


Mean arterial pressure


Mycophenolate mofetil


Mechanistic target of rapamycin


Renin angiotensin aldosterone system


Soluble urokinase plasminogen activator receptor


Transformimg growth factor beta


Tumor necrosis factor alpha


Transient receptor potential cation channel 6


  1. 1.
    Appel GB, D’Agati VD. Primary and secondary (non-genetic) causes of focal and segmental glomerulosclerosis. In: Johnson RJ, Feehally J, Floege J, editors. Comprehensive clinical nephrology. 5th ed. Philadelphia: Elsevier Saunders; 2015. p. 218–30.Google Scholar
  2. 2.
    D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med. 2011;365(25):2398–411.PubMedCrossRefGoogle Scholar
  3. 3.
    Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol. 2015;11(2):76–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Sethi S, Glassock RJ, Fervenza FC. Focal segmental glomerulosclerosis: towards a better understanding for the practicing nephrologist. Nephrol Dial Transplant. 2015;30(3):375–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoyer JR, Vernier RL, Najarian JS, Raij L, Simmons RL, Michael AF. Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet. 1972;2(7773):343–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Artero M, Biava C, Amend W, Tomlanovich S, Vincenti F. Recurrent focal glomerulosclerosis: natural history and response to therapy. Am J Med. 1992;92(4):375–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang JW, Pardo V, Sageshima J, Chen L, Tsai HL, Reiser J, et al. Podocyte foot process effacement in postreperfusion allograft biopsies correlates with early recurrence of proteinuria in focal segmental glomerulosclerosis. Transplantation. 2012;93(12):1238–44.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Le Berre L, Godfrin Y, Lafond-Puyet L, Perretto S, Le Carrer D, Bouhours JF, et al. Effect of plasma fractions from patients with focal and segmental glomerulosclerosis on rat proteinuria. Kidney Int. 2000;58(6):2502–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Zimmerman SW. Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol. 1984;22(1):32–8.PubMedGoogle Scholar
  10. 10.
    Kemper MJ, Wolf G, Muller-Wiefel DE. Transmission of glomerular permeability factor from a mother to her child. N Engl J Med. 2001;344(5):386–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Dantal J, Bigot E, Bogers W, Testa A, Kriaa F, Jacques Y, et al. Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. N Engl J Med. 1994;330(1):7–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Deegens JK, Andresdottir MB, Croockewit S, Wetzels JF. Plasma exchange improves graft survival in patients with recurrent focal glomerulosclerosis after renal transplant. Transpl Int. 2004;17(3):151–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Rea R, Smith C, Sandhu K, Kwan J, Tomson C. Successful transplant of a kidney with focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2001;16(2):416–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med. 2012;366(17):1648–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Sellier-Leclerc AL, Duval A, Riveron S, Macher MA, Deschenes G, Loirat C, et al. A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J Am Soc Nephrol. 2007;18(10):2732–9.PubMedCrossRefGoogle Scholar
  16. 16.
    McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2010;5(11):2115–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Savin VJ, Sharma M, McCarthy ET, Sharma R, Reddy S, Dong J, et al. Cardiotrophin like cytokine-1: candidate for the focal glomerular sclerosis permeability factor. J Am Soc Nephrol. 2008;19:59A.CrossRefGoogle Scholar
  18. 18.
    Wei C, Moller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14(1):55–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med. 2011;17(8):952–60.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Alachkar N, Wei C, Arend LJ, Jackson AM, Racusen LC, Fornoni A, et al. Podocyte effacement closely links to suPAR levels at time of posttransplantation focal segmental glomerulosclerosis occurrence and improves with therapy. Transplantation. 2013;96(7):649–56.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Meijers B, Maas RJ, Sprangers B, Claes K, Poesen R, Bammens B, et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 2014;85(3):636–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Wei C, Trachtman H, Li J, Dong C, Friedman AL, Gassman JJ, et al. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol. 2012;23(12):2051–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Franco Palacios CR, Lieske JC, Wadei HM, Rule AD, Fervenza FC, Voskoboev N, et al. Urine but not serum soluble urokinase receptor (suPAR) may identify cases of recurrent FSGS in kidney transplant candidates. Transplantation. 2013;96(4):394–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Cathelin D, Placier S, Ploug M, Verpont MC, Vandermeersch S, Luque Y, et al. Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J Am Soc Nephrol. 2014;25(8):1662–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rood IM, Deegens JK, Wetzels JF. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol Dial Transplant. 2012;27(3):882–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Pollak MR. Familial FSGS. Adv Chronic Kidney Dis. 2014;21(5):422–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Brown EJ, Pollak MR, Barua M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney Int. 2014;85(5):1030–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gasser DL, Winkler CA, Peng M, An P, McKenzie LM, Kirk GD, et al. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype, and independently, with a decreased content of coenzyme Q10. Am J Physiol Renal Physiol. 2013;305(8):F1228–38.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Korkmaz E, Lipska-Zietkiewicz BS, Boyer O, Gribouval O, Fourrage C, Tabatabaei M, et al. ADCK4-associated glomerulopathy causes adolescence-onset FSGS. J Am Soc Nephrol. 2016;27(1):63–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40(10):1175–84.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet. 2008;40(10):1185–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet. 2010;128(3):345–50.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Genovese G, Tonna SJ, Knob AU, Appel GB, Katz A, Bernhardy AJ, et al. A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int. 2010;78(7):698–704.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dummer PD, Limou S, Rosenberg AZ, Heymann J, Nelson G, Winkler CA, et al. APOL1 kidney disease risk variants: an evolving landscape. Semin Nephrol. 2015;35(3):222–36.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 2011;22(11):2129–37.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Johnstone DB, Shegokar V, Nihalani D, Rathore YS, Mallik L, Ashish, et al. APOL1 null alleles from a rural village in India do not correlate with glomerulosclerosis. PLoS One. 2012;7(12):e51546.Google Scholar
  37. 37.
    Pays E, Vanhollebeke B, Vanhamme L, Paturiaux-Hanocq F, Nolan DP, Perez-Morga D. The trypanolytic factor of human serum. Nat Rev Microbiol. 2006;4(6):477–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Perez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, Nolan DP, Lins L, Homble F, et al. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science. 2005;309(5733):469–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lan X, Jhaveri A, Cheng K, Wen H, Saleem MA, Mathieson PW, et al. APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability. Am J Physiol Renal Physiol. 2014;307(3):F326–36.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Naik RP, Derebail VK, Grams ME, Franceschini N, Auer PL, Peloso GM, et al. Association of sickle cell trait with chronic kidney disease and albuminuria in African Americans. JAMA. 2014;312(20):2115–25.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rao TK, Nicastri AD, Friedman EA. Natural history of heroin-associated nephropathy. N Engl J Med. 1974;290(1):19–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Friedman EA, Tao TK. Disappearance of uremia due to heroin-associated nephropathy. Am J Kidney Dis. 1995;25(5):689–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Lan X, Rao TK, Chander PN, Skorecki K, Singhal PC. Apolipoprotein L1 (APOL1) Variants (Vs) a possible link between Heroin-associated Nephropathy (HAN) and HIV-associated Nephropathy (HIVAN). Front Microbiol. 2015;6:571.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Herlitz LC, Markowitz GS, Farris AB, Schwimmer JA, Stokes MB, Kunis C, et al. Development of focal segmental glomerulosclerosis after anabolic steroid abuse. J Am Soc Nephrol. 2010;21(1):163–72.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sakarcan A, Thomas DB, O’Reilly KP, Richards RW. Lithium-induced nephrotic syndrome in a young pediatric patient. Pediatr Nephrol. 2002;17(4):290–2.PubMedCrossRefGoogle Scholar
  47. 47.
    Vollenbroker B, George B, Wolfgart M, Saleem MA, Pavenstadt H, Weide T. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol. 2009;296(2):F418–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Stokes MB, Davis CL, Alpers CE. Collapsing glomerulopathy in renal allografts: a morphological pattern with diverse clinicopathologic associations. Am J Kidney Dis. 1999;33(4):658–66.PubMedCrossRefGoogle Scholar
  49. 49.
    Nadasdy T, Allen C, Zand MS. Zonal distribution of glomerular collapse in renal allografts: possible role of vascular changes. Hum Pathol. 2002;33(4):437–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Meehan SM, Pascual M, Williams WW, Tolkoff-Rubin N, Delmonico FL, Cosimi AB, et al. De novo collapsing glomerulopathy in renal allografts. Transplantation. 1998;65(9):1192–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Bruggeman LA, Ross MD, Tanji N, Cara A, Dikman S, Gordon RE, et al. Renal epithelium is a previously unrecognized site of HIV-1 infection. J Am Soc Nephrol. 2000;11(11):2079–87.PubMedGoogle Scholar
  52. 52.
    Khatua AK, Taylor HE, Hildreth JE, Popik W. Non-productive HIV-1 infection of human glomerular and urinary podocytes. Virology. 2010;408(1):119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zhong J, Zuo Y, Ma J, Fogo AB, Jolicoeur P, Ichikawa I, et al. Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy. Kidney Int. 2005;68(3):1048–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Rosenberg AZ, Naicker S, Winkler CA, Kopp JB. HIV-associated nephropathies: epidemiology, pathology, mechanisms and treatment. Nat Rev Nephrol. 2015;11(3):150–60.PubMedCrossRefGoogle Scholar
  55. 55.
    Leventhal JS, Ross MJ. Pathogenesis of HIV-associated nephropathy. Semin Nephrol. 2008;28(6):523–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Chandra P, Kopp JB. Viruses and collapsing glomerulopathy: a brief critical review. Clin Kidney J. 2013;6(1):1–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307(11):652–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Rennke HG, Klein PS. Pathogenesis and significance of nonprimary focal and segmental glomerulosclerosis. Am J Kidney Dis. 1989;13(6):443–56.PubMedCrossRefGoogle Scholar
  59. 59.
    Korbet SM. Treatment of primary FSGS in adults. J Am Soc Nephrol. 2012;23(11):1769–76.PubMedCrossRefGoogle Scholar
  60. 60.
    Hogan J, Radhakrishnan J. The treatment of idiopathic focal segmental glomerulosclerosis in adults. Adv Chronic Kidney Dis. 2014;21(5):434–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Inokuchi S, Shirato I, Kobayashi N, Koide H, Tomino Y, Sakai T. Re-evaluation of foot process effacement in acute puromycin aminonucleoside nephrosis. Kidney Int. 1996;50(4):1278–87.PubMedCrossRefGoogle Scholar
  62. 62.
    Nagata M, Kriz W. Glomerular damage after uninephrectomy in young rats. II. Mechanical stress on podocytes as a pathway to sclerosis. Kidney Int. 1992;42(1):148–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Matsusaka T, Sandgren E, Shintani A, Kon V, Pastan I, Fogo AB, et al. Podocyte injury damages other podocytes. J Am Soc Nephrol. 2011;22(7):1275–85.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    D’Agati VD. Podocyte injury in focal segmental glomerulosclerosis: lessons from animal models (a play in five acts). Kidney Int. 2008;73(4):399–406.PubMedCrossRefGoogle Scholar
  65. 65.
    D’Agati V. Podocyte injury can be catching. J Am Soc Nephrol. 2011;22(7):1181–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Ichikawa I, Ma J, Motojima M, Matsusaka T. Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr Opin Nephrol Hypertens. 2005;14(3):205–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Eng DG, Sunseri MW, Kaverina NV, Roeder SS, Pippin JW, Shankland SJ. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int. 2015;88(5):999–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    El Nahas M, Khwaja A. Epidemiology, natural history, and pathophysiology of chronic kidney disease. In: Johnson RJ, Feehally J, Floege J, editors. Comprehensive clinical nephrology. Philadelphia: Elsevier Saunders; 2015. p. 923–7.Google Scholar
  69. 69.
    Smeets B, Moeller MJ. Parietal epithelial cells and podocytes in glomerular diseases. Semin Nephrol. 2012;32(4):357–67.PubMedCrossRefGoogle Scholar
  70. 70.
    Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol. 2005;16(10):2941–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 2006;69(12):2131–47.PubMedCrossRefGoogle Scholar
  72. 72.
    Abbate M, Zoja C, Morigi M, Rottoli D, Angioletti S, Tomasoni S, et al. Transforming growth factor-beta1 is up-regulated by podocytes in response to excess intraglomerular passage of proteins: a central pathway in progressive glomerulosclerosis. Am J Pathol. 2002;161(6):2179–93.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Inagi R, Nangaku M, Onogi H, Ueyama H, Kitao Y, Nakazato K, et al. Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int. 2005;68(6):2639–50.PubMedCrossRefGoogle Scholar
  74. 74.
    D’Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43(2):368–82.PubMedCrossRefGoogle Scholar
  75. 75.
    D’Agati V. The many masks of focal segmental glomerulosclerosis. Kidney Int. 1994;46(4):1223–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Roberts IS. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014;10(8):445–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Deegens JK, Dijkman HB, Borm GF, Steenbergen EJ, van den Berg JG, Weening JJ, et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 2008;74(12):1568–76.PubMedCrossRefGoogle Scholar
  78. 78.
    Haas M, Meehan SM, Karrison TG, Spargo BH. Changing etiologies of unexplained adult nephrotic syndrome: a comparison of renal biopsy findings from 1976–1979 and 1995–1997. Am J Kidney Dis. 1997;30(5):621–31.PubMedCrossRefGoogle Scholar
  79. 79.
    Bahiense-Oliveira M, Saldanha LB, Mota EL, Penna DO, Barros RT, Romao-Junior JE. Primary glomerular diseases in Brazil (1979–1999): is the frequency of focal and segmental glomerulosclerosis increasing? Clin Nephrol. 2004;61(2):90–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Kazi JI, Mubarak M, Ahmed E, Akhter F, Naqvi SA, Rizvi SA. Spectrum of glomerulonephritides in adults with nephrotic syndrome in Pakistan. Clin Exp Nephrol. 2009;13(1):38–43.PubMedCrossRefGoogle Scholar
  81. 81.
    Filler G, Young E, Geier P, Carpenter B, Drukker A, Feber J. Is there really an increase in non-minimal change nephrotic syndrome in children? Am J Kidney Dis. 2003;42(6):1107–13.PubMedCrossRefGoogle Scholar
  82. 82.
    Dragovic D, Rosenstock JL, Wahl SJ, Panagopoulos G, DeVita MV, Michelis MF. Increasing incidence of focal segmental glomerulosclerosis and an examination of demographic patterns. Clin Nephrol. 2005;63(1):1–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Hanko JB, Mullan RN, O’Rourke DM, McNamee PT, Maxwell AP, Courtney AE. The changing pattern of adult primary glomerular disease. Nephrol Dial Transplant. 2009;24(10):3050–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Chang JH, Kim DK, Kim HW, Park SY, Yoo TH, Kim BS, et al. Changing prevalence of glomerular diseases in Korean adults: a review of 20 years of experience. Nephrol Dial Transplant. 2009;24(8):2406–10.PubMedCrossRefGoogle Scholar
  85. 85.
    Kitiyakara C, Eggers P, Kopp JB. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis. 2004;44(5):815–25.PubMedCrossRefGoogle Scholar
  86. 86.
    Swaminathan S, Leung N, Lager DJ, Melton 3rd LJ, Bergstralh EJ, Rohlinger A, et al. Changing incidence of glomerular disease in Olmsted County, Minnesota: a 30-year renal biopsy study. Clin J Am Soc Nephrol. 2006;1(3):483–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Troyanov S, Wall CA, Miller JA, Scholey JW, Cattran DC. Focal and segmental glomerulosclerosis: definition and relevance of a partial remission. J Am Soc Nephrol. 2005;16(4):1061–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Rydel JJ, Korbet SM, Borok RZ, Schwartz MM. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis. 1995;25(4):534–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Stirling CM, Mathieson P, Boulton-Jones JM, Feehally J, Jayne D, Murray HM, et al. Treatment and outcome of adult patients with primary focal segmental glomerulosclerosis in five UK renal units. QJM. 2005;98(6):443–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Beaufils H, Alphonse JC, Guedon J, Legrain M. Focal glomerulosclerosis: natural history and treatment. A report of 70 cases. Nephron. 1978;21(2):75–85.PubMedCrossRefGoogle Scholar
  91. 91.
    Brown CB, Cameron JS, Turner DR, Chantler C, Ogg CS, Williams DG, et al. Focal segmental glomerulosclerosis with rapid decline in renal function (“malignant FSGS”). Clin Nephrol. 1978;10(2):51–61.PubMedGoogle Scholar
  92. 92.
    Korbet SM, Schwartz MM, Lewis EJ. The prognosis of focal segmental glomerular sclerosis of adulthood. Medicine. 1986;65(5):304–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Velosa JA, Holley KE, Torres VE, Offord KP. Significance of proteinuria on the outcome of renal function in patients with focal segmental glomerulosclerosis. Mayo Clin Proc. 1983;58(9):568–77.PubMedGoogle Scholar
  94. 94.
    Stokes MB, D’Agati VD. Morphologic variants of focal segmental glomerulosclerosis and their significance. Adv Chronic Kidney Dis. 2014;21(5):400–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Thomas DB, Franceschini N, Hogan SL, Ten Holder S, Jennette CE, Falk RJ, et al. Clinical and pathologic characteristics of focal segmental glomerulosclerosis pathologic variants. Kidney Int. 2006;69(5):920–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Chun MJ, Korbet SM, Schwartz MM, Lewis EJ. Focal segmental glomerulosclerosis in nephrotic adults: presentation, prognosis, and response to therapy of the histologic variants. J Am Soc Nephrol. 2004;15(8):2169–77.PubMedCrossRefGoogle Scholar
  97. 97.
    Pei Y, Cattran D, Delmore T, Katz A, Lang A, Rance P. Evidence suggesting under-treatment in adults with idiopathic focal segmental glomerulosclerosis. Regional Glomerulonephritis Registry Study. Am J Med. 1987;82(5):938–44.PubMedCrossRefGoogle Scholar
  98. 98.
    Valeri A, Barisoni L, Appel GB, Seigle R, D’Agati V. Idiopathic collapsing focal segmental glomerulosclerosis: a clinicopathologic study. Kidney Int. 1996;50(5):1734–46.PubMedCrossRefGoogle Scholar
  99. 99.
    Schwartz MM, Evans J, Bain R, Korbet SM. Focal segmental glomerulosclerosis: prognostic implications of the cellular lesion. J Am Soc Nephrol. 1999;10(9):1900–7.PubMedGoogle Scholar
  100. 100.
    Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87.PubMedCrossRefGoogle Scholar
  101. 101.
    Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int Suppl. 2012;2: 139–274.Google Scholar
  102. 102.
    Korbet SM. Treatment of primary focal segmental glomerulosclerosis. Kidney Int. 2002;62(6):2301–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Senthil Nayagam L, Ganguli A, Rathi M, Kohli HS, Gupta KL, Joshi K, et al. Mycophenolate mofetil or standard therapy for membranous nephropathy and focal segmental glomerulosclerosis: a pilot study. Nephrol Dial Transplant. 2008;23(6):1926–30.PubMedCrossRefGoogle Scholar
  104. 104.
    Stiles KP, Abbott KC, Welch PG, Yuan CM. Effects of angiotensin-converting enzyme inhibitor and steroid therapy on proteinuria in FSGS: a retrospective study in a single clinic. Clin Nephrol. 2001;56(2):89–95.PubMedGoogle Scholar
  105. 105.
    Duncan N, Dhaygude A, Owen J, Cairns TD, Griffith M, McLean AG, et al. Treatment of focal and segmental glomerulosclerosis in adults with tacrolimus monotherapy. Nephrol Dial Transplant. 2004;19(12):3062–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Ponticelli C, Edefonti A, Ghio L, Rizzoni G, Rinaldi S, Gusmano R, et al. Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: a multicentre randomized controlled trial. Nephrol Dial Transplant. 1993;8(12):1326–32.PubMedGoogle Scholar
  107. 107.
    Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, et al. Cyclosporine in patients with steroid-resistant membranous nephropathy: a randomized trial. Kidney Int. 2001;59(4):1484–90.PubMedCrossRefGoogle Scholar
  108. 108.
    Gipson DS, Trachtman H, Kaskel FJ, Greene TH, Radeva MK, Gassman JJ, et al. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int. 2011;80(8):868–78.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ren H, Shen P, Li X, Pan X, Zhang W, Chen N. Tacrolimus versus cyclophosphamide in steroid-dependent or steroid-resistant focal segmental glomerulosclerosis: a randomized controlled trial. Am J Nephrol. 2013;37(1):84–90.PubMedCrossRefGoogle Scholar
  110. 110.
    Gulati A, Sinha A, Jordan SC, Hari P, Dinda AK, Sharma S, et al. Efficacy and safety of treatment with rituximab for difficult steroid-resistant and -dependent nephrotic syndrome: multicentric report. Clin J Am Soc Nephrol. 2010;5(12):2207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Hogan J, Bomback AS, Mehta K, Canetta PA, Rao MK, Appel GB, et al. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol. 2013;8(12):2072–81.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Leca N. Focal segmental glomerulosclerosis recurrence in the renal allograft. Adv Chronic Kidney Dis. 2014;21(5):448–52.PubMedCrossRefGoogle Scholar
  113. 113.
    Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med. 2013;369(25):2416–23.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Renal Diseases and HypertensionUniversity of Colorado DenverAuroraUSA

Personalised recommendations