Immune-Mediated Mechanisms of Proteinuria



The kidney is a common target of autoimmune and inflammatory diseases, and one of the most common manifestations of immunologic injury of the kidney is proteinuria. Many cellular and molecular components of the immune system can injure the glomerular capillary wall. Thus, appropriate immune responses to infections as well as maladaptive immune responses in patients with autoimmune diseases can cause glomerular injury and proteinuria. Consequently, immunosuppressive medications are effective for treating many forms of proteinuric renal disease. A large number of new biologic agents capable of blocking or amplifying particular components of the immune system are currently being developed. As our understanding of the pathogenesis of proteinuric kidney diseases improves, these new therapeutic agents will likely improve our ability to treat many of the kidney diseases associated with proteinuria.


Proteinuria Podocyte Inflammation Immune Immunoglobulin Immune-complex Cytokine Complement Toll-like receptor 



Antigen presenting cells


Angiotensin II Type I Receptor


C3 glomerulopathy


Calcineurin inhibitors


Cytotoxic T-Lymphocyte–Associated Antigen 4


Immunoglobulin receptor


Focal segmental glomerulosclerosis


Glomerular basement membrane


Glomerular filtration rate






Mannose binding lectin


Minimal change disease


Membranous nephropathy


Membranoproliferative glomerulonephritis


M-type Phospholipase A2 Receptor 1


Thrombospondin Type-1 Domain-Containing 7A


Toll-like receptor


  1. 1.
    Dimke H, Maezawa Y, Quaggin SE. Crosstalk in glomerular injury and repair. Curr Opin Nephrol Hypertens. 2015;24(3):231–8.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kalluri R. Proteinuria with and without renal glomerular podocyte effacement. J Am Soc Nephrol. 2006;17(9):2383–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Dantal J, Bigot E, Bogers W, Testa A, Kriaa F, Jacques Y, Hurault de Ligny B, Niaudet P, Charpentier B, Soulillou JP. Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. N Engl J Med. 1994;330(1):7–14.Google Scholar
  4. 4.
    Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, Lovell H, Warady B, Gunwar S, Chonko AM, et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med. 1996;334(14):878–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Sharma M, Sharma R, McCarthy ET, Savin VJ. “The FSGS factor:” enrichment and in vivo effect of activity from focal segmental glomerulosclerosis plasma. J Am Soc Nephrol. 1999;10(3):552–61.PubMedGoogle Scholar
  6. 6.
    Avila-Casado Mdel C, Perez-Torres I, Auron A, Soto V, Fortoul TI, Herrera-Acosta J. Proteinuria in rats induced by serum from patients with collapsing glomerulopathy. Kidney Int. 2004;66(1):133–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Alachkar N, Gupta G, Montgomery RA. Angiotensin antibodies and focal segmental glomerulosclerosis. N Engl J Med. 2013;368(10):971–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, Hicks MJ, Ramin SM, Kellems RE, Xia Y. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14(8):855–62.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, Fornoni A, Burke GW, Bruneval P, Naesens M, Jackson A, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med. 2014;6(256):256ra136.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, Sharma R, McCarthy ET, Srivastava T, Domen J, Tormo A, et al. Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res. 2015;2015:714964.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Belgiojoso GB, Tarantino A, Bazzi C, Colasanti G, Guerra L, Durante A. Immunofluorescence patterns in chronic membranoproliferative glomerulonephritis (MPGN). Clin Nephrol. 1976;6(1):303–10.PubMedGoogle Scholar
  12. 12.
    Ma H, Sandor DG, Beck Jr LH. The role of complement in membranous nephropathy. Semin Nephrol. 2013;33(6):531–42.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Panzer SE, Laskowski J, Renner B, Kulik L, Ljubanovic D, Huber KM, Zhong W, Pickering MC, Holers VM, Thurman JM. IgM exacerbates glomerular disease progression in complement-induced glomerulopathy. Kidney Int. 2015;88(3):528–37.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Strassheim D, Renner B, Panzer S, Fuquay R, Kulik L, Ljubanovic D, Holers VM, Thurman JM. IgM contributes to glomerular injury in FSGS. J Am Soc Nephrol. 2013;24(3):393–406.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hogarth PM. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol. 2002;14(6):798–802.PubMedCrossRefGoogle Scholar
  16. 16.
    Clynes R, Dumitru C, Ravetch JV. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science. 1998;279(5353):1052–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Matsumoto K, Watanabe N, Akikusa B, Kurasawa K, Matsumura R, Saito Y, Iwamoto I, Saito T. Fc receptor-independent development of autoimmune glomerulonephritis in lupus-prone MRL/lpr mice. Arthritis Rheum. 2003;48(2):486–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176–89.PubMedCrossRefGoogle Scholar
  19. 19.
    Ronco P, Debiec H. Molecular pathomechanisms of membranous nephropathy: from Heymann nephritis to alloimmunization. J Am Soc Nephrol. 2005;16(5):1205–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Beck Jr LH, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361(1):11–21.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Tomas NM, Beck Jr LH, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, Dolla G, Hoxha E, Helmchen U, Dabert-Gay AS, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014;371(24):2277–87.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Debiec H, Lefeu F, Kemper MJ, Niaudet P, Deschenes G, Remuzzi G, Ulinski T, Ronco P. Early-childhood membranous nephropathy due to cationic bovine serum albumin. N Engl J Med. 2011;364(22):2101–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, Dragomirescu L, Voinescu C, Patel N, Pearce K, Hubank M, et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med. 2011;364(7):616–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Pickering MC, D’Agati VD, Nester CM, Smith RJ, Haas M, Appel GB, Alpers CE, Bajema IM, Bedrosian C, Braun M, et al. C3 glomerulopathy: consensus report. Kidney Int. 2013;84(6):1079–89.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Servais A, Noel LH, Roumenina LT, Le Quintrec M, Ngo S, Dragon-Durey MA, Macher MA, Zuber J, Karras A, Provot F, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012;82(4):454–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Servais A, Fremeaux-Bacchi V, Lequintrec M, Salomon R, Blouin J, Knebelmann B, Grunfeld JP, Lesavre P, Noel LH, Fakhouri F. Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J Med Genet. 2007;44(3):193–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Thurman JM. Complement in kidney disease: core curriculum 2015. Am J Kidney Dis. 2015;65(1):156–68.PubMedCrossRefGoogle Scholar
  28. 28.
    Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 2004;113(10):1390–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ishimoto T, Shimada M, Gabriela G, Kosugi T, Sato W, Lee PY, Lanaspa MA, Rivard C, Maruyama S, Garin EH, et al. Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant. 2013;28(6):1439–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Pawar RD, Castrezana-Lopez L, Allam R, Kulkarni OP, Segerer S, Radomska E, Meyer TN, Schwesinger CM, Akis N, Grone HJ, et al. Bacterial lipopeptide triggers massive albuminuria in murine lupus nephritis by activating toll-like receptor 2 at the glomerular filtration barrier. Immunology. 2009;128(1 Suppl):e206–21.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    ACCESS Trial Group. Treatment of lupus nephritis with abatacept: the abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheumatol. 2014;66(11):3096–104.CrossRefGoogle Scholar
  32. 32.
    Markowitz GS, Bomback AS, Perazella MA. Drug-induced glomerular disease: direct cellular injury. Clin J Am Soc Nephrol. 2015;10(7):1291–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, Chen L, Ciancio G, Faridi MH, Behr D, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med. 2013;369(25):2416–23.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, Johnson RJ. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 2010;78(3):296–302.PubMedCrossRefGoogle Scholar
  35. 35.
    Markowitz GS, Nasr SH, Stokes MB, D’Agati VD. Treatment with IFN-{alpha}, -{beta}, or -{gamma} is associated with collapsing focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2010;5(4):607–15.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nichols B, Jog P, Lee JH, Blackler D, Wilmot M, D’Agati V, Markowitz G, Kopp JB, Alper SL, Pollak MR, et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2015;87(2):332–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Le Berre L, Herve C, Buzelin F, Usal C, Soulillou JP, Dantal J. Renal macrophage activation and Th2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. Kidney Int. 2005;68(5):2079–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Mansour H, Cheval L, Elalouf JM, Aude JC, Alyanakian MA, Mougenot B, Doucet A, Deschenes G. T-cell transcriptome analysis points up a thymic disorder in idiopathic nephrotic syndrome. Kidney Int. 2005;67(6):2168–77.PubMedCrossRefGoogle Scholar
  39. 39.
    Sellier-Leclerc AL, Duval A, Riveron S, Macher MA, Deschenes G, Loirat C, Verpont MC, Peuchmaur M, Ronco P, Monteiro RC, et al. A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J Am Soc Nephrol. 2007;18(10):2732–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Koyama A, Fujisaki M, Kobayashi M, Igarashi M, Narita M. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int. 1991;40(3):453–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Van Den Berg JG, Aten J, Chand MA, Claessen N, Dijkink L, Wijdenes J, Lakkis FG, Weening JJ. Interleukin-4 and interleukin-13 act on glomerular visceral epithelial cells. J Am Soc Nephrol. 2000;11(3):413–22.Google Scholar
  42. 42.
    Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, Jordan SC, Yap HK. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol. 2007;18(5):1476–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Penny MJ, Boyd RA, Hall BM. Permanent CD8(+) T cell depletion prevents proteinuria in active Heymann nephritis. J Exp Med. 1998;188(10):1775–84.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Fervenza FC, Abraham RS, Erickson SB, Irazabal MV, Eirin A, Specks U, Nachman PH, Bergstralh EJ, Leung N, Cosio FG, et al. Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. Clin J Am Soc Nephrol. 2010;5(12):2188–98.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Remuzzi G, Chiurchiu C, Abbate M, Brusegan V, Bontempelli M, Ruggenenti P. Rituximab for idiopathic membranous nephropathy. Lancet. 2002;360(9337):923–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Beck Jr LH, Fervenza FC, Beck DM, Bonegio RG, Malik FA, Erickson SB, Cosio FG, Cattran DC, Salant DJ. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol. 2011;22(8):1543–50.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Townsend MJ, Monroe JG, Chan AC. B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol Rev. 2010;237(1):264–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Chan AC. B cell immunotherapy in autoimmunity--2010 update. Mol Immunol. 2011;48(11):1344–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Ruggenenti P, Ruggiero B, Cravedi P, Vivarelli M, Massella L, Marasa M, Chianca A, Rubis N, Ene-Iordache B, Rudnicki M, et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J Am Soc Nephrol. 2014.Google Scholar
  50. 50.
    Fernandez-Fresnedo G, Segarra A, Gonzalez E, Alexandru S, Delgado R, Ramos N, Egido J, Praga M. Rituximab treatment of adult patients with steroid-resistant focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2009;4(8):1317–23.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hofstra JM, Deegens JK, Wetzels JF. Rituximab: effective treatment for severe steroid-dependent minimal change nephrotic syndrome? Nephrol Dial Transplant. 2007;22(7):2100–2.PubMedCrossRefGoogle Scholar
  52. 52.
    Gilbert RD, Hulse E, Rigden S. Rituximab therapy for steroid-dependent minimal change nephrotic syndrome. Pediatr Nephrol. 2006;21(11):1698–700.PubMedCrossRefGoogle Scholar
  53. 53.
    Hogan J, Radhakrishnan J. The treatment of idiopathic focal segmental glomerulosclerosis in adults. Adv Chronic Kidney Dis. 2014;21(5):434–41.PubMedCrossRefGoogle Scholar
  54. 54.
    Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14(9):931–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazzi A, Ciancio G, Chen L, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3(85):85ra46.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Renal Diseases and HypertensionUniversity of Colorado DenverAuroraUSA

Personalised recommendations