Pathophysiology of Diabetic Nephropathy



Diabetic nephropathy is the leading cause of end stage kidney disease, accounting for approximately 50 % of cases of end stage renal disease. Microalbuminuria is the earliest clinical manifestation of diabetic nephropathy. Microalbuminuria may progress to overt albuminuria, which is a hallmark of irreversible nephropathy and predicts progression of kidney disease. Many of the pathophysiological changes seen in the kidney in diabetic nephropathy result from prolonged hyperglycemia. The podocyte is one of the key targets in diabetic kidney disease and podocyte damage leads to foot process effacement and the development of proteinuria. While angiotensin converting enzyme inhibitors and angiotensin receptor blockers have long been used as the mainstay of treatment for diabetic nephropathy, targeted, effective new therapies are urgently needed.


Albuminuria Hyperfiltration Hyperglycemia Mesangial expansion Renin-angiotensin system blockade 



Angiotensin-converting enzyme


Adrenocorticotropic hormone


Advanced glycation end products


Acute kidney injury


Angiotensin II receptor blockers


Activating transcription factor 6


Chronic kidney diseases


Cardiovascular disease


Damage-associated molecular patterns


Diabetic kidney disease


Diabetic nephropathy


Estimated glomerular filtration rate


Epithelial-to-mesenchymal transition


Endoplasmic reticulum


End-stage renal disease


Endothelin Receptor Antagonists


Glomerular basement membrane


Inositol requiring enzyme 1


Melanocortin receptors


Matrix metalloproteinases


Nuclear factor Kappa B


Protein-kinase-RNA-like ER kinase


Receptors for AGE


Renin-angiotensin system


Reactive oxygen species


Type 2 diabetes


Urinary albumin excretion


α-Smooth muscle actin


  1. 1.
    Collins AJ, Foley RN, Gilbertson DT, Chen SC. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int Suppl. 2015;5(1):2–7.CrossRefGoogle Scholar
  2. 2.
    Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, et al. US Renal Data System 2014 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2015;65(6 Suppl 1):A7.CrossRefGoogle Scholar
  3. 3.
    Papale M, Di Paolo S, Magistroni R, Lamacchia O, Di Palma AM, De Mattia A, et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care. 2010;33(11):2409–15.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Am J Kidney Dis. 2014;64(4):510–33.PubMedCrossRefGoogle Scholar
  5. 5.
    de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305(24):2532–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20(8):1813–21.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Toyama T, Furuichi K, Ninomiya T, Shimizu M, Hara A, Iwata Y, et al. The impacts of albuminuria and low eGFR on the risk of cardiovascular death, all-cause mortality, and renal events in diabetic patients: meta-analysis. PLoS One. 2013;8(8), e71810.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Schmieder RE, Schutte R, Schumacher H, Bohm M, Mancia G, Weber MA, et al. Mortality and morbidity in relation to changes in albuminuria, glucose status and systolic blood pressure: an analysis of the ONTARGET and TRANSCEND studies. Diabetologia. 2014;57(10):2019–29.PubMedCrossRefGoogle Scholar
  9. 9.
    Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37(10):2864–83.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Perkins BA, Ficociello LH, Ostrander BE, Silva KH, Weinberg J, Warram JH, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol. 2007;18(4):1353–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Salinero-Fort MA, San Andres-Rebollo FJ, de Burgos-Lunar C, Gomez-Campelo P, Chico-Moraleja RM, Lopez de Andres A, et al. Five-year incidence of chronic kidney disease (stage 3-5) and associated risk factors in a Spanish cohort: the MADIABETES Study. PLoS One. 2015;10(4):e0122030.Google Scholar
  12. 12.
    National Kidney Foundation. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60(5):850–86.CrossRefGoogle Scholar
  13. 13.
    Berhane AM, Weil EJ, Knowler WC, Nelson RG, Hanson RL. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin J Am Soc Nephrol. 2011;6(10):2444–51.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    de Boer IH, Afkarian M, Rue TC, Cleary PA, Lachin JM, Molitch ME, et al. Renal outcomes in patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol. 2014;25(10):2342–50.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Stanton RC. Clinical challenges in diagnosis and management of diabetic kidney disease. Am J Kidney Dis. 2014;63(2 Suppl 2):S3–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Gosmanov AR, Gosmanova EO. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the DCCT/EDIC cohort. Arch Intern Med. 2011;171(17):1596. author reply 7.PubMedCrossRefGoogle Scholar
  17. 17.
    Gregg EW, Cheng YJ, Saydah S, Cowie C, Garfield S, Geiss L, et al. Trends in death rates among U.S. adults with and without diabetes between 1997 and 2006: findings from the National Health Interview Survey. Diabetes Care. 2012;35(6):1252–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Ficociello LH, Perkins BA, Roshan B, Weinberg JM, Aschengrau A, Warram JH, et al. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care. 2009;32(5):889–93.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nelson RG, Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetic kidney disease in Pima Indians. Diabetes Care. 1993;16(1):335–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Pavkov ME, Knowler WC, Bennett PH, Looker HC, Krakoff J, Nelson RG. Increasing incidence of proteinuria and declining incidence of end-stage renal disease in diabetic Pima Indians. Kidney Int. 2006;70(10):1840–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Robles NR, Villa J, Gallego RH. Non-proteinuric diabetic nephropathy. J Clin Med. 2015;4(9):1761–73.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chawla V, Roshan B. Non-proteinuric diabetic nephropathy. Curr Diab Rep. 2014;14(10):529.PubMedCrossRefGoogle Scholar
  24. 24.
    Porrini E, Ruggenenti P, Mogensen CE, Barlovic DP, Praga M, Cruzado JM, et al. Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol. 2015;3(5):382–91.PubMedCrossRefGoogle Scholar
  25. 25.
    MacIsaac RJ, Panagiotopoulos S, McNeil KJ, Smith TJ, Tsalamandris C, Hao H, et al. Is nonalbuminuric renal insufficiency in type 2 diabetes related to an increase in intrarenal vascular disease? Diabetes Care. 2006;29(7):1560–6.PubMedCrossRefGoogle Scholar
  26. 26.
    MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care. 2004;27(1):195–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, Group US. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes. 2006;55(6):1832–9.PubMedCrossRefGoogle Scholar
  28. 28.
    McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S, et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond). 2015;129(12):1237–49.CrossRefGoogle Scholar
  29. 29.
    Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res. 2014;55(3):561–72.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, et al. G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J Am Soc Nephrol. 2016;27(5):1362–78.PubMedCrossRefGoogle Scholar
  31. 31.
    Bilous R. Microvascular disease: what does the UKPDS tell us about diabetic nephropathy? Diabet Med. 2008;25 Suppl 2:25–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes. 2003;52(4):1036–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Katavetin P, Katavetin P. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361(14):1410–1. author reply 1.PubMedCrossRefGoogle Scholar
  34. 34.
    Nosadini R, Velussi M, Brocco E, Bruseghin M, Abaterusso C, Saller A, et al. Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes. 2000;49(3):476–84.PubMedCrossRefGoogle Scholar
  35. 35.
    Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77(1):57–64.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bjornstad P, Cherney DZ, Snell-Bergeon JK, Pyle L, Rewers M, Johnson RJ, et al. Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with Type 1 diabetes. Nephrol Dial Transplant. 2015;30(10):1706–11.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yang GK, Har RLH, Lytvyn Y, Yip P, Cherney DZI. Renal hyperfiltration is associated with glucose-dependent changes in fractional excretion of sodium in patients with uncomplicated type 1 diabetes. Diabetes Care. 2014;37(10):2774–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas MC, Moran JL, Harjutsalo V, Thorn L, Waden J, Saraheimo M, et al. Hyperfiltration in type 1 diabetes: does it exist and does it matter for nephropathy? Diabetologia. 2012;55(5):1505–13.PubMedCrossRefGoogle Scholar
  40. 40.
    KDOQI. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154.Google Scholar
  41. 41.
    Tone A, Shikata K, Matsuda M, Usui H, Okada S, Ogawa D, et al. Clinical features of non-diabetic renal diseases in patients with type 2 diabetes. Diabetes Res Clin Pract. 2005;69(3):237–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Pham TT, Sim JJ, Kujubu DA, Liu IL, Kumar VA. Prevalence of nondiabetic renal disease in diabetic patients. Am J Nephrol. 2007;27(3):322–8.PubMedCrossRefGoogle Scholar
  43. 43.
    He F, Xia X, Wu XF, Yu XQ, Huang FX. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: a meta-analysis. Diabetologia. 2013;56(3):457–66.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen JLT, Francis J. Pyridoxamine, advanced glycation inhibition, and diabetic nephropathy. J Am Soc Nephrol. 2012;23(1):6–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Jha JC, Jandeleit-Dahm KAM, Cooper ME. New insights into the use of biomarkers of diabetic nephropathy. Adv Chronic Kidney Dis. 2014;21(3):318–26.PubMedCrossRefGoogle Scholar
  46. 46.
    Ben Ameur R, Molina L, Bolvin C, Kifagi C, Jarraya F, Ayadi H, et al. Proteomic approaches for discovering biomarkers of diabetic nephropathy. Nephrol Dial Transplant. 2010;25(9):2866–75.PubMedCrossRefGoogle Scholar
  47. 47.
    Hellemons ME, Kerschbaum J, Bakker SJL, Neuwirt H, Mayer B, Mayer G, et al. Validity of biomarkers predicting onset or progression of nephropathy in patients with Type 2 diabetes: a systematic review. Diabet Med. 2012;29(5):567–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Mann JF, Rossing P, Wiecek A, Rosivall L, Mark P, Mayer G. Diagnosis and treatment of early renal disease in patients with type 2 diabetes mellitus: what are the clinical needs? Nephrol Dial Transplant. 2015;30 Suppl 4:iv1–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Badal SS, Danesh FR. New insights into molecular mechanisms of diabetic kidney disease. Am J Kidney Dis. 2014;63(2 Suppl 2):S63–83.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49(6):1774–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Hostetter TH, Rennke HG, Brenner BM. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med. 1982;72(3):375–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Zatz R, Meyer TW, Rennke HG, Brenner BM. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci U S A. 1985;82(17):5963–7.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Reubi FC. Glomerular filtration rate, renal blood flow and blood viscosity during and after diabetic coma. Circ Res. 1953;1(5):410–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Stalder G, Schmid R. Severe functional disorders of glomerular capillaries and renal hemodynamics in treated diabetes mellitus during childhood. Ann Paediatr. 1959;193:129–38.PubMedGoogle Scholar
  55. 55.
    Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin-treatment. Diabetologia. 1975;11(3):221–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981;19(3):410–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Anderson S, Vora JP. Current concepts of renal hemodynamics in diabetes. J Diabetes Complications. 1995;9(4):304–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Premaratne E, Verma S, Ekinci EI, Theverkalam G, Jerums G, MacIsaac RJ. The impact of hyperfiltration on the diabetic kidney. Diabetes Metab. 2015;41(1):5–17.PubMedCrossRefGoogle Scholar
  59. 59.
    Harris RC, Haralson MA, Badr KF. Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Invest. 1992;66(5):548–54.PubMedGoogle Scholar
  60. 60.
    Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, et al. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol. 2001;12(3):413–22.PubMedGoogle Scholar
  61. 61.
    Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 2014;124(6):2299–306.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, Shortland J, Brown CB, el Nahas AM. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transplant. 1997;12(1):43–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Barnes JL, Gorin Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 2011;79(9):944–56.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gabbiani G. The biology of the myofibroblast. Kidney Int. 1992;41(3):530–2.PubMedCrossRefGoogle Scholar
  65. 65.
    Abrass CK, Spicer D, Raugi GJ. Insulin induces a change in extracellular matrix glycoproteins synthesized by rat mesangial cells in culture. Kidney Int. 1994;46(3):613–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Herbach N, Schairer I, Blutke A, Kautz S, Siebert A, Goke B, et al. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis. Am J Physiol Renal Physiol. 2009;296(4):F819–29.PubMedCrossRefGoogle Scholar
  67. 67.
    Holderied A, Romoli S, Eberhard J, Konrad LA, Devarapu SK, Marschner JA, et al. Glomerular parietal epithelial cell activation induces collagen secretion and thickening of Bowman's capsule in diabetes. Lab Invest. 2015;95(3):273–82.PubMedCrossRefGoogle Scholar
  68. 68.
    Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int. 2007;71(9):846–54.PubMedCrossRefGoogle Scholar
  69. 69.
    Loeffler I, Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells. 2015;4(4):631–52.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Xu X, Xiao L, Xiao P, Yang S, Chen G, Liu F, et al. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem. 2014;21(28):3244–60.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Del Prete D, Anglani F, Forino M, Ceol M, Fioretto P, Nosadini R, et al. Down-regulation of glomerular matrix metalloproteinase-2 gene in human NIDDM. Diabetologia. 1997;40(12):1449–54.PubMedCrossRefGoogle Scholar
  72. 72.
    Romanic AM, Burns-Kurtis CL, Ao Z, Arleth AJ, Ohlstein EH. Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients. Am J Physiol Renal Physiol. 2001;281(2):F309–17.PubMedGoogle Scholar
  73. 73.
    Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol. 2007;292(3):F905–11.PubMedCrossRefGoogle Scholar
  74. 74.
    Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318(20):1315–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Cerami A, Vlassara H, Brownlee M. Role of advanced glycosylation products in complications of diabetes. Diabetes Care. 1988;11 Suppl 1:73–9.PubMedGoogle Scholar
  76. 76.
    Yang CW, Vlassara H, Peten EP, He CJ, Striker GE, Striker LJ. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc Natl Acad Sci U S A. 1994;91(20):9436–40.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kirstein M, Aston C, Hintz R, Vlassara H. Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation end product-modified proteins. J Clin Invest. 1992;90(2):439–46.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev. 2001;17(6):436–43.PubMedCrossRefGoogle Scholar
  79. 79.
    Nowotny K, Jung T, Hohn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Abel M, Ritthaler U, Zhang Y, Deng Y, Schmidt AM, Greten J, et al. Expression of receptors for advanced glycosylated end-products in renal disease. Nephrol Dial Transplant. 1995;10(9):1662–7.PubMedGoogle Scholar
  81. 81.
    Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, et al. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol. 2000;11(9):1656–66.PubMedGoogle Scholar
  82. 82.
    Wendt TM, Tanji N, Guo J, Kislinger TR, Qu W, Lu Y, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol. 2003;162(4):1123–37.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009;52(11):2251–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol. 2013;94(1):55–68.PubMedCrossRefGoogle Scholar
  85. 85.
    Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63(4):582–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Ha H, Hwang IA, Park JH, Lee HB. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract. 2008;82 Suppl 1:S42–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64(3):663–72.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kumar A, Yerra VG, Malik RA. Comment on Sharma. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64:663–72; Diabetes. 2015;64(9):e32–3; discussion e4.Google Scholar
  91. 91.
    Hasegawa G, Nakano K, Sawada M, Uno K, Shibayama Y, Ienaga K, et al. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int. 1991;40(6):1007–12.PubMedCrossRefGoogle Scholar
  92. 92.
    Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther. 2012;30(1):49–59.PubMedCrossRefGoogle Scholar
  93. 93.
    Garcia-Garcia PM, Getino-Melian MA, Dominguez-Pimentel V, Navarro-Gonzalez JF. Inflammation in diabetic kidney disease. World J Diabetes. 2014;5(4):431–43.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Donate-Correa J, Martin-Nunez E, Muros-de-Fuentes M, Mora-Fernandez C, Navarro-Gonzalez JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res. 2015;2015:948417.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Navarro JF, Mora-Fernandez C. The role of TNF-alpha in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev. 2006;17(6):441–50.PubMedCrossRefGoogle Scholar
  96. 96.
    Dadras F, Khoshjou F. Endoplasmic reticulum and its role in diabetic nephropathy. Iran J Kidney Dis. 2015;9(4):267–72.PubMedGoogle Scholar
  97. 97.
    Zhuang A, Forbes JM. Stress in the kidney is the road to pERdition: is endoplasmic reticulum stress a pathogenic mediator of diabetic nephropathy? J Endocrinol. 2014;222(3):R97–111.PubMedCrossRefGoogle Scholar
  98. 98.
    Chung AC, Yu X, Lan HY. MicroRNA and nephropathy: emerging concepts. Int J Nephrol Renovasc Dis. 2013;6:169–79.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Hou J, Zhao D. MicroRNA regulation in renal pathophysiology. Int J Mol Sci. 2013;14(7):13078–92.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wei Q, Mi QS, Dong Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life. 2013;65(7):602–14.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9):3432–7.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008;22(12):4126–35.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bijkerk R, Duijs JM, Khairoun M, Ter Horst CJ, van der Pol P, Mallat MJ, et al. Circulating microRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation. Am J Transplant. 2015;15(4):1081–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Patrakka J, Tryggvason K. New insights into the role of podocytes in proteinuria. Nat Rev Nephrol. 2009;5(8):463–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Huber TB, Benzing T. The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens. 2005;14(3):211–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Benzing T. Signaling at the slit diaphragm. J Am Soc Nephrol. 2004;15(6):1382–91.PubMedCrossRefGoogle Scholar
  107. 107.
    Maezawa Y, Takemoto M, Yokote K. Cell biology of diabetic nephropathy: roles of endothelial cells, tubulointerstitial cells and podocytes. J Diabetes Investig. 2015;6(1):3–15.PubMedCrossRefGoogle Scholar
  108. 108.
    Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5:151.Google Scholar
  109. 109.
    Jefferson JA, Alpers CE, Shankland SJ. Podocyte biology for the bedside. Am J Kidney Dis. 2011;58(5):835–45.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Teng B, Duong M, Tossidou I, Yu X, Schiffer M. Role of protein kinase C in podocytes and development of glomerular damage in diabetic nephropathy. Front Endocrinol (Lausanne). 2014;5:179.Google Scholar
  111. 111.
    Diez-Sampedro A, Lenz O, Fornoni A. Podocytopathy in diabetes: a metabolic and endocrine disorder. Am J Kidney Dis. 2011;58(4):637–46.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Fu J, Lee K, Chuang PY, Liu Z, He JC. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol. 2015;308(4):F287–97.PubMedCrossRefGoogle Scholar
  113. 113.
    Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008;88(2):451–87.PubMedCrossRefGoogle Scholar
  114. 114.
    de Boer IH, Group DER. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):24–30.PubMedCrossRefGoogle Scholar
  115. 115.
    Thompson A. Proteinuria as a surrogate end point--more data are needed. Nat Rev Nephrol. 2012;8(5):306–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Tonna S, El-Osta A, Cooper ME, Tikellis C. Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nat Rev Nephrol. 2010;6(6):332–41.PubMedCrossRefGoogle Scholar
  117. 117.
    Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.CrossRefGoogle Scholar
  118. 118.
    Gerstein HC, Miller ME, Ismail-Beigi F, Largay J, McDonald C, Lochnan HA, et al. Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. Lancet. 2014;384(9958):1936–41.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.PubMedCrossRefGoogle Scholar
  120. 120.
    Bonds DE, Miller ME, Bergenstal RM, Buse JB, Byington RP, Cutler JA, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wheeler DC, Becker GJ. Summary of KDIGO guideline. What do we really know about management of blood pressure in patients with chronic kidney disease? Kidney Int. 2013;83(3):377–83.PubMedCrossRefGoogle Scholar
  122. 122.
    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.PubMedCrossRefGoogle Scholar
  123. 123.
    Taler SJ, Agarwal R, Bakris GL, Flynn JT, Nilsson PM, Rahman M, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis. 2013;62(2):201–13.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Patil MR, Mishra A, Jain N, Gutch M, Tewari R. Weight loss for reduction of proteinuria in diabetic nephropathy: comparison with angiotensin-converting enzyme inhibitor therapy. Indian J Nephrol. 2013;23(2):108–13.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Friedman AN, Wolfe B. Is bariatric surgery an effective treatment for type II diabetic kidney disease? Clin J Am Soc Nephrol. 2016;11(3):528–35.PubMedCrossRefGoogle Scholar
  126. 126.
    Otoda T, Kanasaki K, Koya D. Low-protein diet for diabetic nephropathy. Curr Diab Rep. 2014;14(9):523.PubMedCrossRefGoogle Scholar
  127. 127.
    Nezu U, Kamiyama H, Kondo Y, Sakuma M, Morimoto T, Ueda S. Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomised controlled trials. BMJ Open. 2013;3(5).Google Scholar
  128. 128.
    Pan Y, Guo LL, Jin HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88(3):660–6.PubMedGoogle Scholar
  129. 129.
    Viberti GC, Walker J, Dodds R. Low-protein diet and progression of renal disease in diabetic nephropathy. Lancet. 1990;335(8688):550–1.PubMedCrossRefGoogle Scholar
  130. 130.
    Slinin Y, Ishani A, Rector T, Fitzgerald P, MacDonald R, Tacklind J, et al. Management of hyperglycemia, dyslipidemia, and albuminuria in patients with diabetes and CKD: a systematic review for a KDOQI clinical practice guideline. Am J Kidney Dis. 2012;60(5):747–69.PubMedCrossRefGoogle Scholar
  131. 131.
    Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Tolonen N, Forsblom C, Makinen V-P, Harjutsalo V, Gordin D, Feodoroff M, et al. Different lipid variables predict incident coronary artery disease in patients with type 1 diabetes with or without diabetic nephropathy: the FinnDiane study. Diabetes Care. 2014;37(8):2374–82.PubMedCrossRefGoogle Scholar
  133. 133.
    Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001;59(1):260–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Allison SJ. Acute kidney injury: mechanism of AKI sensitivity in diabetic nephropathy. Nat Rev Nephrol. 2014;10(9):484.Google Scholar
  135. 135.
    Bedford M, Farmer CK, Irving J, Stevens PE. Acute kidney injury: an acceptable risk of treatment with renin-angiotensin system blockade in primary care? Can J Kidney Health Dis. 2015;2:14.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Onuigbo MAC. Can ACE, inhibitors and angiotensin receptor blockers be detrimental in CKD patients? Nephron Clin Pract. 2011;118(4):c407–19.PubMedCrossRefGoogle Scholar
  137. 137.
    Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med. 1996;334(15):939–45.PubMedCrossRefGoogle Scholar
  138. 138.
    Ruggenenti P, Perna A, Gherardi G, Gaspari F, Benini R, Remuzzi G. Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Ramipril Efficacy in Nephropathy. Lancet. 1998;352(9136):1252–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.PubMedCrossRefGoogle Scholar
  141. 141.
    Kalaitzidis RG, Bakris GL. The current state of RAAS blockade in the treatment of hypertension and proteinuria. Curr Cardiol Rep. 2009;11(6):436–42.PubMedCrossRefGoogle Scholar
  142. 142.
    Johnson SA, Spurney RF. Twenty years after ACEIs and ARBs: emerging treatment strategies for diabetic nephropathy. Am J Physiol Renal Physiol. 2015;309(10):F807–20.PubMedGoogle Scholar
  143. 143.
    Mann JFE, Anderson C, Gao P, Gerstein HC, Boehm M, Ryden L, et al. Dual inhibition of the renin-angiotensin system in high-risk diabetes and risk for stroke and other outcomes: results of the ONTARGET trial. J Hypertens. 2013;31(2):414–21.PubMedCrossRefGoogle Scholar
  144. 144.
    Tobe SW, Clase CM, Gao P, McQueen M, Grosshennig A, Wang X, et al. Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk: results from the ONTARGET and TRANSCEND studies. Circulation. 2011;123(10):1098–107.PubMedCrossRefGoogle Scholar
  145. 145.
    Mann JFE, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547–53.PubMedCrossRefGoogle Scholar
  146. 146.
    El-Haddad B, Reule S, Drawz PE. Dual renin-angiotensin-aldosterone system inhibition for the treatment of diabetic kidney disease: adverse effects and unfulfilled promise. Curr Diab Rep. 2015;15(10):640.CrossRefGoogle Scholar
  147. 147.
    Chen SS, Seliger SL, Fried LF. Complete inhibition of the renin-angiotensin-aldosterone system; where do we stand? Curr Opin Nephrol Hypertens. 2014;23(5):449–55.PubMedCrossRefGoogle Scholar
  148. 148.
    Rutkowski B, Tylicki L. Nephroprotective action of renin-angiotensin-aldosterone system blockade in chronic kidney disease patients: the landscape after ALTITUDE and VA NEPHRON-D trails. J Ren Nutr. 2015;25(2):194–200.PubMedCrossRefGoogle Scholar
  149. 149.
    Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.PubMedCrossRefGoogle Scholar
  150. 150.
    Mavrakanas TA, Gariani K, Martin PY. Mineralocorticoid receptor blockade in addition to angiotensin converting enzyme inhibitor or angiotensin II receptor blocker treatment: an emerging paradigm in diabetic nephropathy: a systematic review. Eur J Intern Med. 2014;25(2):173–6.PubMedCrossRefGoogle Scholar
  151. 151.
    Esteghamati A, Noshad S, Jarrah S, Mousavizadeh M, Khoee SH, Nakhjavani M. Long-term effects of addition of mineralocorticoid receptor antagonist to angiotensin II receptor blocker in patients with diabetic nephropathy: a randomized clinical trial. Nephrol Dial Transplant. 2013;28(11):2823–33.PubMedCrossRefGoogle Scholar
  152. 152.
    Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314(9):884–94.PubMedCrossRefGoogle Scholar
  153. 153.
    Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327–36.PubMedCrossRefGoogle Scholar
  154. 154.
    Chin MP, Reisman SA, Bakris GL, O'Grady M, Linde PG, McCullough PA, et al. Mechanisms contributing to adverse cardiovascular events in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. Am J Nephrol. 2014;39(6):499–508.PubMedCrossRefGoogle Scholar
  155. 155.
    de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492–503.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Harcourt BE, Sourris KC, Coughlan MT, Walker KZ, Dougherty SL, Andrikopoulos S, et al. Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int. 2011;80(2):190–8.PubMedCrossRefGoogle Scholar
  157. 157.
    He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 1999;48(6):1308–15.PubMedCrossRefGoogle Scholar
  158. 158.
    Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, et al. Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control Clin Trials. 1999;20(5):493–510.PubMedCrossRefGoogle Scholar
  159. 159.
    Unoki-Kubota H, Yamagishi S-i, Takeuchi M, Bujo H, Saito Y. Pyridoxamine, an inhibitor of advanced glycation end product (AGE) formation ameliorates insulin resistance in obese, type 2 diabetic mice. Protein Pept Lett. 2010;17(9):1177–81.PubMedCrossRefGoogle Scholar
  160. 160.
    Proceedings of a conference on insulin pump therapy in diabetes. Multicenter study of effect on microvascular disease. Introduction. The Kroc Collaborative Study Group. Diabetes. 1985;34(Suppl 3):1–4.Google Scholar
  161. 161.
    Lewis EJ, Greene T, Spitalewiz S, Blumenthal S, Berl T, Hunsicker LG, et al. Pyridorin in type 2 diabetic nephropathy. J Am Soc Nephrol. 2012;23(1):131–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Klaus G. Renoprotection with vitamin D: specific for diabetic nephropathy? Kidney Int. 2008;73(2):141–3.PubMedCrossRefGoogle Scholar
  163. 163.
    Chokhandre MK, Mahmoud MI, Hakami T, Jafer M, Inamdar AS. Vitamin D & its analogues in type 2 diabetic nephropathy: a systematic review. J Diabetes Metab Disord. 2015;14:58.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Derakhshanian H, Shab-Bidar S, Speakman JR, Nadimi H, Djafarian K. Vitamin D and diabetic nephropathy: a systematic review and meta-analysis. Nutrition. 2015;31(10):1189–94.PubMedCrossRefGoogle Scholar
  165. 165.
    Tumlin JA, Galphin CM, Rovin BH. Advanced diabetic nephropathy with nephrotic range proteinuria: a pilot study of the long-term efficacy of subcutaneous ACTH gel on proteinuria, progression of CKD, and urinary levels of VEGF and MCP-1. J Diabetes Res. 2013;2013:489869.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR, et al. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011;22(6):1144–51.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):527–35.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Parvanova A, van der Meer IM, Iliev I, Perna A, Gaspari F, Trevisan R, et al. Effect on blood pressure of combined inhibition of endothelin-converting enzyme and neutral endopeptidase with daglutril in patients with type 2 diabetes who have albuminuria: a randomised, crossover, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1(1):19–27.PubMedCrossRefGoogle Scholar
  169. 169.
    Navarro JF, Mora C, Muros M, Garcia J. Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial. J Am Soc Nephrol. 2005;16(7):2119–26.PubMedCrossRefGoogle Scholar
  170. 170.
    Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Chahin J, Mendez ML, Gallego E, et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol. 2015;26(1):220–9.Google Scholar
  171. 171.
    Zhu H, Chen X, Cai G, Zheng Y, Liu M, Liu W, et al. Telmisartan combined with probucol effectively reduces urinary protein in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, multi-center clinical study. J Diabetes. 2015.Google Scholar
  172. 172.
    Maahs DM, Caramori L, Cherney DZ, Galecki AT, Gao C, Jalal D, et al. Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study. Curr Diab Rep. 2013;13(4):550–9.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Doria A, Krolewski AS. Diabetes: lowering serum uric acid levels to prevent kidney failure. Nat Rev Nephrol. 2011;7(9):495–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Liu P, Chen Y, Wang B, Zhang F, Wang D, Wang Y. Allopurinol treatment improves renal function in patients with type 2 diabetes and asymptomatic hyperuricemia: 3-year randomized parallel-controlled study. Clin Endocrinol (Oxf). 2015;83(4):475–82.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Felsenstein Medical Research Center and Department of Nephrology and Hypertension, Rabin Medical CenterSackler School of Medicine, Tel-Aviv UniversityTel-AvivIsrael
  2. 2.Department of MedicineUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations