Skip to main content

Abstract

Chronic progressive nephropathies, independent of the type of initial insult, are often associated with high levels of urinary protein excretion. In addition to well established glomerular role in proteinuria, recent studies have shown that proximal tubular cell plays important role in development of proteinuria both under physiologic and pathologic conditions. Many single-site mutations and complete PTC dysfunction result in a high level of albuminuria, without any histologic or electron microscopy structural alterations in the glomerular filtration barrier. Reabsorption of filtered albumin involves a low-capacity/high-affinity megalin-cubulin receptor-mediated process and a high-capacity/low-affinity, process that could be fluid-phase endocytosis. Future studies are warranted examining proteinuria not only as a glomerular impairment but also as proximal tubule dysfunction and may lead to many new advances in the diagnosis and treatment of proteinuric states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKI:

Acute kidney injury

AP1:

Activator protein 1

BAD:

Bcl-2 associated death promoter

BASP:

Brain abundant signal protein 1

Bcl-2:

B cell lymphoma 2

Bcl-xL:

B-cell lymphoma-extra large

BMP:

Bone morphogenic protein

DAMP:

Danger-associated molecular patterns

DT:

Diphtheria toxin

EGF:

Epidermal growth factor

EMT:

Epithelial-to-mesenchymal transition

ER:

Endoplasmic reticulum

ERK:

Extracellular signal related kinases

FADD:

Fas associated protein with death domain

FcRn:

Neonatal Fc receptor

FITC:

Fluorescein isothiocyanate

HMG-CoA:

3-hydroxy-3-methylglutaryl CoA

IgG:

Immunoglobulin

IL:

Inter-leukin

K d :

Dissociation constant

kD:

Kilo dalton

MAP:

Mitogen activated protein

MCP:

Monocyte chemoattractant protein

MHC:

Major histocompatibility complex

MWF:

Munich-Wistar Fromter

NF-kB:

Nuclear factor kappa-light chain-enhancer of activated B cells

NHE3:

Na+/H+ exchanger isoform3

NLR:

Nod like Receptor

NLRP3:

NOD- like receptor family Pyrin domain containing 3

OK:

Opossum kidney

PDGF:

Platelet derived growth factor

PKB:

Protein kinase B

PPAR:

Peroxisome proliferator activated receptor

PT:

Proximal tubule

PTC:

Proximal tubular cell

RANTES:

Regulated on activation normal T cell expressed and secreted

RAP:

Receptor associated protein

RCT:

Random control trial

TGF:

Tumor growth factor

TIMP:

Tissue inhibitors of metalloproteinases

TLR:

Toll-like receptors

UTP:

Uridine Tri-phosphate

α SMA:

α-Smooth muscle actin

References

  1. Tryggvason K, Wartiovaara J. Molecular basis of glomerular permselectivity. Curr Opin Nephrol Hypertens. 2001;10(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  2. Tojo A, Endou H. Intrarenal handling of proteins in rats using fractional micropuncture technique. Am J Physiol. 1992;263(4 Pt 2):F601–6.

    CAS  PubMed  Google Scholar 

  3. Russo LM et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 2007;71(6):504–13.

    Article  CAS  PubMed  Google Scholar 

  4. Maunsbach AB. Albumin absorption by renal proximal tubule cells. Nature. 1966;212(5061):546–7.

    Article  CAS  PubMed  Google Scholar 

  5. Eppel GA et al. The return of glomerular-filtered albumin to the rat renal vein. Kidney Int. 1999;55(5):1861–70.

    Article  CAS  PubMed  Google Scholar 

  6. Dunn KW et al. Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol. 2002;283(3):C905–16.

    Article  CAS  PubMed  Google Scholar 

  7. Molitoris BA, Sandoval RM. Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Renal Physiol. 2005;288(6):F1084–9.

    Article  CAS  PubMed  Google Scholar 

  8. Sandoval RM et al. Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Physiol Cell Physiol. 2004;287(2):C517–26.

    Article  CAS  PubMed  Google Scholar 

  9. Tenten V et al. Albumin is recycled from the primary urine by tubular transcytosis. J Am Soc Nephrol. 2013;24(12):1966–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fassi A et al. Progressive glomerular injury in the MWF rat is predicted by inborn nephron deficit. J Am Soc Nephrol. 1998;9(8):1399–406.

    CAS  PubMed  Google Scholar 

  11. Schulz A et al. Nephron deficit is not required for progressive proteinuria development in the Munich Wistar Fromter rat. Physiol Genomics. 2008;35(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  12. Goldberg RI, Smith RM, Jarett L. Insulin and alpha 2-macroglobulin-methylamine undergo endocytosis by different mechanisms in rat adipocytes: I. Comparison of cell surface events. J Cell Physiol. 1987;133(2):203–12.

    Article  CAS  PubMed  Google Scholar 

  13. Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10(9):597–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002;3(4):256–66.

    Article  CAS  PubMed  Google Scholar 

  15. Mansson LE et al. Progression of bacterial infections studied in real time--novel perspectives provided by multiphoton microscopy. Cell Microbiol. 2007;9(10):2334–43.

    Article  PubMed  CAS  Google Scholar 

  16. Melican K et al. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol. 2008;10(10):1987–98.

    Article  CAS  PubMed  Google Scholar 

  17. Christensen EI, Nielsen S. Structural and functional features of protein handling in the kidney proximal tubule. Semin Nephrol. 1991;11(4):414–39.

    CAS  PubMed  Google Scholar 

  18. Wall DA, Maack T. Endocytic uptake, transport, and catabolism of proteins by epithelial cells. Am J Physiol. 1985;248(1 Pt 1):C12–20.

    CAS  PubMed  Google Scholar 

  19. Maack T et al. Atrial natriuretic factor: structure and functional properties. Kidney Int. 1985;27(4):607–15.

    Article  CAS  PubMed  Google Scholar 

  20. Clapp WL et al. Axial heterogeneity in the handling of albumin by the rabbit proximal tubule. Lab Invest. 1988;58(5):549–58.

    CAS  PubMed  Google Scholar 

  21. Birn H, Christensen EI, Nielsen S. Kinetics of endocytosis in renal proximal tubule studied with ruthenium red as membrane marker. Am J Physiol. 1993;264(2 Pt 2):F239–50.

    CAS  PubMed  Google Scholar 

  22. Park CH, Maack T. Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit. J Clin Invest. 1984;73(3):767–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Comper WD, Russo LM. Where does albuminuria come from in diabetic kidney disease? Curr Diab Rep. 2008;8(6):477–85.

    Article  CAS  PubMed  Google Scholar 

  24. Osicka TM, Comper WD. Protein degradation during renal passage in normal kidneys is inhibited in experimental albuminuria. Clin Sci (Lond). 1997;93(1):65–72.

    Article  CAS  Google Scholar 

  25. Gudehithlu KP et al. Degradation of albumin by the renal proximal tubule cells and the subsequent fate of its fragments. Kidney Int. 2004;65(6):2113–22.

    Article  CAS  PubMed  Google Scholar 

  26. Russo LM et al. Albuminuria associated with CD2AP knockout mice is primarily due to dysfunction of the renal degradation pathway processing of filtered albumin. FEBS Lett. 2013;587(22):3738–41.

    Article  CAS  PubMed  Google Scholar 

  27. Ferrell N et al. Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor. Biotechnol Bioeng. 2012;109(3):797–803.

    Article  CAS  PubMed  Google Scholar 

  28. Bomsel M et al. Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell. 1990;62(4):719–31.

    Article  CAS  PubMed  Google Scholar 

  29. von Bonsdorff CH, Fuller SD, Simons K. Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters. EMBO J. 1985;4(11):2781–92.

    Google Scholar 

  30. Bourdeau JE, Carone FA. Contraluminal serum albumin uptake in isolated perfused renal tubules. Am J Physiol. 1973;224(2):399–404.

    CAS  PubMed  Google Scholar 

  31. Kerjaschki D, Farquhar MG. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci U S A. 1982;79(18):5557–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raychowdhury R et al. Autoimmune target in Heymann nephritis is a glycoprotein with homology to the LDL receptor. Science. 1989;244(4909):1163–5.

    Article  CAS  PubMed  Google Scholar 

  33. Davis CG et al. Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature. 1987;326(6115):760–5.

    Article  CAS  PubMed  Google Scholar 

  34. Seetharam B et al. Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor-cobalamin receptor. J Clin Invest. 1997;99(10):2317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kristiansen M et al. Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding. J Biol Chem. 1999;274(29):20540–4.

    Article  CAS  PubMed  Google Scholar 

  36. Bork P, Beckmann G. The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol. 1993;231(2):539–45.

    Article  CAS  PubMed  Google Scholar 

  37. Bachinsky DR et al. Detection of two forms of GP330. Their role in Heymann nephritis. Am J Pathol. 1993;143(2):598–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chatelet F et al. Ultrastructural localization by monoclonal antibodies of brush border antigens expressed by glomeruli. I. Renal distribution. Am J Pathol. 1986;122(3):500–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Birn H et al. Receptor-associated protein is important for normal processing of megalin in kidney proximal tubules. J Am Soc Nephrol. 2000;11(2):191–202.

    CAS  PubMed  Google Scholar 

  40. Willnow TE et al. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc Natl Acad Sci U S A. 1995;92(10):4537–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bu G et al. 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J. 1995;14(10):2269–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bu G, Rennke S. Receptor-associated protein is a folding chaperone for low density lipoprotein receptor-related protein. J Biol Chem. 1996;271(36):22218–24.

    Article  CAS  PubMed  Google Scholar 

  43. Tojo A et al. Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats. Histochem Cell Biol. 2001;116(3):269–76.

    Article  CAS  PubMed  Google Scholar 

  44. Obermuller N et al. An endocytosis defect as a possible cause of proteinuria in polycystic kidney disease. Am J Physiol Renal Physiol. 2001;280(2):F244–53.

    CAS  PubMed  Google Scholar 

  45. Piwon N et al. ClC-5 Cl- -channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature. 2000;408(6810):369–73.

    Article  CAS  PubMed  Google Scholar 

  46. Wahlstedt-Froberg V et al. Proteinuria in cubilin-deficient patients with selective vitamin B12 malabsorption. Pediatr Nephrol. 2003;18(5):417–21.

    PubMed  Google Scholar 

  47. Kristiansen M et al. Cubilin P1297L mutation associated with hereditary megaloblastic anemia 1 causes impaired recognition of intrinsic factor-vitamin B(12) by cubilin. Blood. 2000;96(2):405–9.

    CAS  PubMed  Google Scholar 

  48. Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol. 2001;280(4):F562–73.

    CAS  PubMed  Google Scholar 

  49. Russo LM, Bakris GL, Comper WD. Renal handling of albumin: a critical review of basic concepts and perspective. Am J Kidney Dis. 2002;39(5):899–919.

    Article  CAS  PubMed  Google Scholar 

  50. Moestrup SK, Verroust PJ. Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu Rev Nutr. 2001;21:407–28.

    Article  CAS  PubMed  Google Scholar 

  51. Cui S et al. Megalin/gp330 mediates uptake of albumin in renal proximal tubule. Am J Physiol. 1996;271(4 Pt 2):F900–7.

    CAS  PubMed  Google Scholar 

  52. Birn H et al. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest. 2000;105(10):1353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhai XY et al. Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. Kidney Int. 2000;58(4):1523–33.

    Article  CAS  PubMed  Google Scholar 

  54. Amsellem S et al. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol. 2010;21(11):1859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morris SM et al. Dual roles for the Dab2 adaptor protein in embryonic development and kidney transport. EMBO J. 2002;21(7):1555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wagner MC et al. Proximal tubules have the capacity to regulate uptake of albumin. J Am Soc Nephrol. 2016;27(2):482–94.

    Article  PubMed  Google Scholar 

  57. Jones EA, Waldmann TA. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest. 1972;51(11):2916–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaudhury C et al. Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry. 2006;45(15):4983–90.

    Article  CAS  PubMed  Google Scholar 

  59. Kuo TT et al. Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol. 2010;30(6):777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haymann JP et al. Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol. 2000;11(4):632–9.

    CAS  PubMed  Google Scholar 

  61. Borvak J et al. Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol. 1998;10(9):1289–98.

    Article  CAS  PubMed  Google Scholar 

  62. Vidarsson G et al. FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis. Blood. 2006;108(10):3573–9.

    Article  CAS  PubMed  Google Scholar 

  63. Pricop L et al. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol. 2001;166(1):531–7.

    Article  CAS  PubMed  Google Scholar 

  64. Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature. 1989;337(6203):184–7.

    Article  CAS  PubMed  Google Scholar 

  65. Yoshida M et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity. 2004;20(6):769–83.

    Article  CAS  PubMed  Google Scholar 

  66. Rodewald R. Intestinal transport of antibodies in the newborn rat. J Cell Biol. 1973;58(1):189–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jakoi ER, Cambier J, Saslow S. Transepithelial transport of maternal antibody: purification of IgG receptor from newborn rat intestine. J Immunol. 1985;135(5):3360–4.

    CAS  PubMed  Google Scholar 

  68. He W et al. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature. 2008;455(7212):542–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sarav M et al. Renal FcRn reclaims albumin but facilitates elimination of IgG. J Am Soc Nephrol. 2009;20(9):1941–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Andersen JT et al. Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J Biol Chem. 2010;285(7):4826–36.

    Article  PubMed  CAS  Google Scholar 

  71. Hilliard LM et al. Characterization of the urinary albumin degradation pathway in the isolated perfused rat kidney. J Lab Clin Med. 2006;147(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  72. Greive KA et al. Glomerular permselectivity factors are not responsible for the increase in fractional clearance of albumin in rat glomerulonephritis. Am J Pathol. 2001;159(3):1159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koltun M et al. Mechanism of hypoalbuminemia in rodents. Am J Physiol Heart Circ Physiol. 2005;288(4):H1604–10.

    Article  CAS  PubMed  Google Scholar 

  74. Koltun M, Comper WD. Retention of albumin in the circulation is governed by saturable renal cell-mediated processes. Microcirculation. 2004;11(4):351–60.

    Article  CAS  PubMed  Google Scholar 

  75. Ladinsky MS, Huey-Tubman KE, Bjorkman PJ. Electron tomography of late stages of FcRn-mediated antibody transcytosis in neonatal rat small intestine. Mol Biol Cell. 2012;23(13):2537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Prabhat P et al. Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc Natl Acad Sci U S A. 2007;104(14):5889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sandoval RM et al. Multiple factors influence glomerular albumin permeability in rats. J Am Soc Nephrol. 2012;23(3):447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358(6383):209–15.

    Article  CAS  PubMed  Google Scholar 

  79. Carone FA, Ganote CE. D-serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis. Arch Pathol. 1975;99(12):658–62.

    CAS  PubMed  Google Scholar 

  80. Christensen EI et al. Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci U S A. 2003;100(14):8472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yammani RR et al. Loss of albumin and megalin binding to renal cubilin in rats results in albuminuria after total body irradiation. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R339–46.

    Article  CAS  PubMed  Google Scholar 

  82. Gekle M et al. NHE3 Na+/H+ exchanger supports proximal tubular protein reabsorption in vivo. Am J Physiol Renal Physiol. 2004;287(3):F469–73.

    Article  CAS  PubMed  Google Scholar 

  83. Sidaway JE et al. Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells. J Am Soc Nephrol. 2004;15(9):2258–65.

    Article  CAS  PubMed  Google Scholar 

  84. Verhulst A, D’Haese PC, De Broe ME. Inhibitors of HMG-CoA reductase reduce receptor-mediated endocytosis in human kidney proximal tubular cells. J Am Soc Nephrol. 2004;15(9):2249–57.

    Article  CAS  PubMed  Google Scholar 

  85. Atthobari J et al. The effect of statins on urinary albumin excretion and glomerular filtration rate: results from both a randomized clinical trial and an observational cohort study. Nephrol Dial Transplant. 2006;21(11):3106–14.

    Article  CAS  PubMed  Google Scholar 

  86. Rangel-Filho A et al. Rab38 modulates proteinuria in model of hypertension-associated renal disease. J Am Soc Nephrol. 2013;24(2):283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rangel-Filho A, Sharma M, Datta YH, Moreno C, Roman RJ, Iwamoto Y, et al. RF-2 gene modulates proteinuria and albuminuria independently of changes in glomerular permeability in the fawn-hooded hypertensive rat. J Am Soc Nephrol. 2005;16(4):852–6.

    Google Scholar 

  88. Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, et al. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci U S A. 2010;107(27):12369–74.

    Google Scholar 

  89. Reisman SA et al. Bardoxolone methyl decreases megalin and activates nrf2 in the kidney. J Am Soc Nephrol. 2012;23(10):1663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grgic I et al. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int. 2012;82(2):172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sekine M et al. Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury. Transgenic Res. 2012;21(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang MZ et al. CSF-1 signaling mediates recovery from acute kidney injury. J Clin Invest. 2012;122(12):4519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Christensen EI et al. Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. Eur J Cell Biol. 1995;66(4):349–64.

    CAS  PubMed  Google Scholar 

  94. Sousa MM et al. Evidence for the role of megalin in renal uptake of transthyretin. J Biol Chem. 2000;275(49):38176–81.

    Article  CAS  PubMed  Google Scholar 

  95. Wang SS et al. Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet. 2000;9(20):2937–45.

    Article  CAS  PubMed  Google Scholar 

  96. Luyckx VA et al. Diet-dependent hypercalciuria in transgenic mice with reduced CLC5 chloride channel expression. Proc Natl Acad Sci U S A. 1999;96(21):12174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Garcia-Sanchez O, Lopez-Hernandez FJ, Lopez-Novoa JM. An integrative view on the role of TGF-beta in the progressive tubular deletion associated with chronic kidney disease. Kidney Int. 2010;77(11):950–5.

    Article  CAS  PubMed  Google Scholar 

  98. Wolf G et al. Albumin up-regulates the type II transforming growth factor-beta receptor in cultured proximal tubular cells. Kidney Int. 2004;66(5):1849–58.

    Article  CAS  PubMed  Google Scholar 

  99. Stephan JP et al. Albumin stimulates the accumulation of extracellular matrix in renal tubular epithelial cells. Am J Nephrol. 2004;24(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  100. Cardenas A et al. Up-regulation of the kinin B receptor pathway modulates the TGF-beta/Smad signaling cascade to reduce renal fibrosis induced by albumin. Peptides. 2015;73:7–19.

    Article  CAS  PubMed  Google Scholar 

  101. Lin SL et al. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173(6):1617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zeisberg M, Duffield JS. Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol. 2010;21(8):1247–53.

    Article  PubMed  Google Scholar 

  103. Desmouliere A et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  104. Johnson DW et al. Paracrine stimulation of human renal fibroblasts by proximal tubule cells. Kidney Int. 1998;54(3):747–57.

    Article  CAS  PubMed  Google Scholar 

  105. Eddy A. Role of cellular infiltrates in response to proteinuria. Am J Kidney Dis. 2001;37(1 Suppl 2):S25–9.

    Article  CAS  PubMed  Google Scholar 

  106. Abbate M et al. Proximal tubular cells promote fibrogenesis by TGF-beta1-mediated induction of peritubular myofibroblasts. Kidney Int. 2002;61(6):2066–77.

    Article  CAS  PubMed  Google Scholar 

  107. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. 2010;21(2):212–22.

    Article  CAS  PubMed  Google Scholar 

  108. Wen Q et al. Urinary proteins from patients with nephrotic syndrome alters the signalling proteins regulating epithelial-mesenchymal transition. Nephrology (Carlton). 2010;15(1):63–74.

    Article  CAS  Google Scholar 

  109. Li JH et al. Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol. 2002;13(6):1464–72.

    Article  CAS  PubMed  Google Scholar 

  110. Lan HY et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol. 2003;14(6):1535–48.

    Article  CAS  PubMed  Google Scholar 

  111. Klahr S. The bone morphogenetic proteins (BMPs). Their role in renal fibrosis and renal function. J Nephrol. 2003;16(2):179–85.

    CAS  PubMed  Google Scholar 

  112. Zeisberg M et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003;9(7):964–8.

    Article  CAS  PubMed  Google Scholar 

  113. Tang WW et al. Platelet-derived growth factor-BB induces renal tubulointerstitial myofibroblast formation and tubulointerstitial fibrosis. Am J Pathol. 1996;148(4):1169–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Andrawis NS, Wang E, Abernethy DR. Endothelin-1 induces an increase in total protein synthesis and expression of the smooth muscle alpha-actin gene in vascular smooth muscle cells. Life Sci. 1996;59(7):523–8.

    Article  CAS  PubMed  Google Scholar 

  115. Erkan E, De Leon M, Devarajan P. Albumin overload induces apoptosis in LLC-PK(1) cells. Am J Physiol Renal Physiol. 2001;280(6):F1107–14.

    CAS  PubMed  Google Scholar 

  116. Arici M et al. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma. J Am Soc Nephrol. 2003;14(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  117. Erkan E, Devarajan P, Schwartz GJ. Mitochondria are the major targets in albumin-induced apoptosis in proximal tubule cells. J Am Soc Nephrol. 2007;18(4):1199–208.

    Article  CAS  PubMed  Google Scholar 

  118. Sanchez-Nino MD et al. Albumin-induced apoptosis of tubular cells is modulated by BASP1. Cell Death Dis. 2015;6, e1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  120. Caruso-Neves C et al. PKB and megalin determine the survival or death of renal proximal tubule cells. Proc Natl Acad Sci U S A. 2006;103(49):18810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Takase O et al. Inhibition of NF-kappaB-dependent Bcl-xL expression by clusterin promotes albumin-induced tubular cell apoptosis. Kidney Int. 2008;73(5):567–77.

    Article  CAS  PubMed  Google Scholar 

  122. Tejera N et al. Persistent proteinuria up-regulates angiotensin II type 2 receptor and induces apoptosis in proximal tubular cells. Am J Pathol. 2004;164(5):1817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Benigni A et al. Angiotensin-converting enzyme inhibition prevents glomerular-tubule disconnection and atrophy in passive Heymann nephritis, an effect not observed with a calcium antagonist. Am J Pathol. 2001;159(5):1743–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ohse T et al. Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int. 2006;70(8):1447–55.

    Article  CAS  PubMed  Google Scholar 

  125. Erkan E et al. Induction of renal tubular cell apoptosis in focal segmental glomerulosclerosis: roles of proteinuria and Fas-dependent pathways. J Am Soc Nephrol. 2005;16(2):398–407.

    Article  CAS  PubMed  Google Scholar 

  126. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  127. Zhuang Y et al. NLRP3 inflammasome mediates albumin-induced renal tubular injury through impaired mitochondrial function. J Biol Chem. 2014;289(36):25101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vilaysane A et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol. 2010;21(10):1732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang Y et al. Induction of monocyte chemoattractant protein-1 by albumin is mediated by nuclear factor kappaB in proximal tubule cells. J Am Soc Nephrol. 1999;10(6):1204–13.

    CAS  PubMed  Google Scholar 

  130. Zoja C et al. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappa B activation. Kidney Int. 1998;53(6):1608–15.

    Article  CAS  PubMed  Google Scholar 

  131. Tang S et al. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest. 2003;111(4):515–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Molitoris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verma, S.K., Molitoris, B.A. (2016). Tubular Mechanisms in Proteinuria. In: Blaine, J. (eds) Proteinuria: Basic Mechanisms, Pathophysiology and Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-43359-2_3

Download citation

Publish with us

Policies and ethics