Skip to main content

Glomerular Mechanisms of Proteinuria

  • Chapter
  • First Online:
  • 1118 Accesses

Abstract

The glomerular filtration barrier (GFB) consisting of glomerular endothelial cells, the glomerular basement membrane and podocytes is the key structure within the nephron that prevents filtration of serum proteins into the urine. While all three components are necessary for the development and maintenance of the GFB, the majority of investigations have focused on the role of the podocyte in preventing proteinuria. Podocytes are terminally differentiated cells with a highly complex architecture. Mutations in structural or signaling proteins in podocytes lead to proteinuria, as does podocyte damage leading to alterations in podocyte shape or progressive podocyte loss. Podocytes are not only important structural elements within the GFB but also play an active role in handling serum proteins such as albumin and IgG. Advanced imaging methods have further contributed to our understanding of the glomerular regulation of protein filtration in normal and disease states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACTN4:

Actinin alpha 4

Angpt:

Angiopoietin

APOL1:

Apolipoprotein L1

COX2:

Cyclooxygenase 2

CXCL12:

1/C-X-C chemokine ligand 12

CXCR4:

C-X-C chemokine receptor 4

ESRD:

End stage renal disease

FSGS:

Focal segmental glomerulosclerosis

GAGs:

Glycosaminoglycans

GBM:

Glomerular basement membrane

GEC:

Glomerular endothelial cells

GFB:

Glomerular filtration barrier

Grb2:

Growth-factor receptor binder 2

GSC:

Glomerular sieving coefficient

GTP:

Guanosine-5′-triphosphate

IgG:

Immunoglobulin

L:

Liter

LAMB2:

Lamininβ2

NcK:

Non catalytic kinase

nm:

Nanometer

NPHS1:

Gene that encodes nephrin

NPHS2:

Gene that encodes podocin

N-WASP:

Wiskott–Aldrich syndrome protein

PEC:

Parietal epithelial cells

PI3k:

p85/phosphatidylinositol 3-kinase

PLCg:

Phospholipase C gamma

SH2/3:

Src homology 2 (SH2)/Src homology 3 (SH3)

TAK1:

Transforming growth factor (TGF)-β activated kinase 1

Tie:

Tyrosine-protein kinase receptor

TRPC6:

Transient receptor potential cation channel subfamily 6

VEGFA:

Vascular endothelial growth factor a

VEGFR:

VEGF receptor

WT1:

Wilms tumor protein 1

ZO-1:

Zonula occludens-1

References

  1. Scott RP, Quaggin SE. Review series: the cell biology of renal filtration. J Cell Biol. 2015;209(2):199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Satchell S. The role of the glomerular endothelium in albumin handling. Nat Rev Nephrol. 2013;9(12):717–25.

    Article  CAS  PubMed  Google Scholar 

  3. Dane MJ, van den Berg BM, Lee DH, Boels MG, Tiemeier GL, Avramut MC, et al. A microscopic view on the renal endothelial glycocalyx. Am J Physiol Renal Physiol. 2015;308(9):F956–66.

    Article  CAS  PubMed  Google Scholar 

  4. Jeansson M, Haraldsson B. Glomerular size and charge selectivity in the mouse after exposure to glucosaminoglycan-degrading enzymes. J Am Soc Nephrol. 2003;14(7):1756–65.

    Article  CAS  PubMed  Google Scholar 

  5. Jeansson M, Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol. 2006;290(1):F111–6.

    Article  CAS  PubMed  Google Scholar 

  6. Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012;226(4):562–74.

    Article  CAS  PubMed  Google Scholar 

  7. Miner JH. Glomerular basement membrane composition and the filtration barrier. Pediatr Nephrol. 2011;26(9):1413–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suh JH, Miner JH. The glomerular basement membrane as a barrier to albumin. Nat Rev Nephrol. 2013;9(8):470–7. doi:10.1038/nrneph.2013.109.

    Article  CAS  PubMed  Google Scholar 

  9. Miner JH. The glomerular basement membrane. Exp Cell Res. 2012;318(9):973–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Savige J. Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol. 2014;592(Pt 18):4013–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matejas V, Hinkes B, Alkandari F, Al-Gazali L, Annexstad E, Aytac MB, et al. Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat. 2010;31(9):992–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kriz W, Elger M, Mundel P, Lemley KV. Structure-stabilizing forces in the glomerular tuft. J Am Soc Nephrol. 1995;5(10):1731–9.

    CAS  PubMed  Google Scholar 

  13. Grishman E, Churg J, Porush JG. Glomerular morphology in nephrotic heroin addicts. Lab Invest. 1976;35(5):415–24.

    CAS  PubMed  Google Scholar 

  14. Rossmann P, Bukovsky A, Matousovic K, Holub M, Kral J. Puromycin aminonucleoside nephropathy: ultrastructure, glomerular polyanion, and cell surface markers. J Pathol. 1986;148(4):337–48.

    Article  CAS  PubMed  Google Scholar 

  15. Duan HJ. Sequential ultrastructural podocytic lesions and development of proteinuria in serum sickness nephritis in the rat. Virchows Arch A Pathol Anat Histopathol. 1990;417(4):279–90.

    Article  CAS  PubMed  Google Scholar 

  16. Kriz W. Progressive renal failure--inability of podocytes to replicate and the consequences for development of glomerulosclerosis. Nephrol Dial Transplant. 1996;11(9):1738–42.

    Article  CAS  PubMed  Google Scholar 

  17. Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol. 2003;7(4):255–9.

    Article  CAS  PubMed  Google Scholar 

  18. Burghardt T, Hochapfel F, Salecker B, Meese C, Grone HJ, Rachel R, et al. Advanced electron microscopical techniques provide a deeper insight into the peculiar features of podocytes. Am J Physiol Renal Physiol. 2015;309(12):F1082–9. doi:10.1152/ajprenal.00338.2015.

    Article  CAS  PubMed  Google Scholar 

  19. Ristola M, Lehtonen S. Functions of the podocyte proteins nephrin and Neph3 and the transcriptional regulation of their genes. Clin Sci (Lond). 2014;126(5):315–28.

    Article  CAS  Google Scholar 

  20. New LA, Martin CE, Jones N. Advances in slit diaphragm signaling. Curr Opin Nephrol Hypertens. 2014;23(4):420–30.

    Article  PubMed  Google Scholar 

  21. Schell C, Baumhakl L, Salou S, Conzelmann AC, Meyer C, Helmstadter M, et al. N-wasp is required for stabilization of podocyte foot processes. J Am Soc Nephrol. 2013;24(5):713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mouawad F, Tsui H, Takano T. Role of Rho-GTPases and their regulatory proteins in glomerular podocyte function. Can J Physiol Pharmacol. 2013;91(10):773–82.

    Article  CAS  PubMed  Google Scholar 

  23. Reiser J, Kriz W, Kretzler M, Mundel P. The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol. 2000;11(1):1–8.

    CAS  PubMed  Google Scholar 

  24. Liu G, Kaw B, Kurfis J, Rahmanuddin S, Kanwar YS, Chugh SS. Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J Clin Invest. 2003;112(2):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eyre J, Ioannou K, Grubb BD, Saleem MA, Mathieson PW, Brunskill NJ, et al. Statin-sensitive endocytosis of albumin by glomerular podocytes. Am J Physiol Renal Physiol. 2007;292(2):F674–81.

    Article  CAS  PubMed  Google Scholar 

  26. Dobrinskikh E, Okamura K, Kopp JB, Doctor RB, Blaine J. Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am J Physiol Renal Physiol. 2014;306(9):F941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carson JM, Okamura K, Wakashin H, McFann K, Dobrinskikh E, Kopp JB, et al. Podocytes degrade endocytosed albumin primarily in lysosomes. PLoS One. 2014;9(6), e99771.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tanner GA. Glomerular sieving coefficient of serum albumin in the rat: a two-photon microscopy study. Am J Physiol Renal Physiol. 2009;296(6):F1258–65.

    Article  CAS  PubMed  Google Scholar 

  29. Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: Retrieval is disrupted in nephrotic states. Kidney Int. 2007;71(6):504–13.

    Article  CAS  PubMed  Google Scholar 

  30. Sandoval RM, Wagner MC, Patel M, Campos-Bilderback SB, Rhodes GJ, Wang E, et al. Multiple factors influence glomerular albumin permeability in rats. J Am Soc Nephrol. 2012;23(3):447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schiessl IM, Hammer A, Kattler V, Gess B, Theilig F, Witzgall R, et al. Intravital imaging reveals angiotensin II-induced transcytosis of albumin by podocytes. J Am Soc Nephrol. 2016;27(3):731–44.

    Article  PubMed  Google Scholar 

  32. Chung JJ, Huber TB, Godel M, Jarad G, Hartleben B, Kwoh C, et al. Albumin-associated free fatty acids induce macropinocytosis in podocytes. J Clin Invest. 2015;125(6):2307–16.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sivaskandarajah GA, Jeansson M, Maezawa Y, Eremina V, Baelde HJ, Quaggin SE. Vegfa protects the glomerular microvasculature in diabetes. Diabetes. 2012;61(11):2958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim SI, Lee SY, Wang Z, Ding Y, Haque N, Zhang J, et al. TGF-beta-activated kinase 1 is crucial in podocyte differentiation and glomerular capillary formation. J Am Soc Nephrol. 2014;25(9):1966–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin J, Sison K, Li C, Tian R, Wnuk M, Sung HK, et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell. 2012;151(2):384–99.

    Article  CAS  PubMed  Google Scholar 

  36. Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D, Henkelman M, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest. 2011;121(6):2278–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dimke H, Maezawa Y, Quaggin SE. Crosstalk in glomerular injury and repair. Curr Opin Nephrol Hypertens. 2015;24(3):231–8.

    PubMed  PubMed Central  Google Scholar 

  38. Takabatake Y, Sugiyama T, Kohara H, Matsusaka T, Kurihara H, Koni PA, et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol. 2009;20(8):1714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abrahamson DR, Hudson BG, Stroganova L, Borza DB, St John PL. Cellular origins of type IV collagen networks in developing glomeruli. J Am Soc Nephrol. 2009;20(7):1471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. St John PL, Abrahamson DR. Glomerular endothelial cells and podocytes jointly synthesize laminin-1 and -11 chains. Kidney Int. 2001;60(3):1037–46.

    Article  CAS  PubMed  Google Scholar 

  41. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.

    Article  CAS  PubMed  Google Scholar 

  42. Bierzynska A, Soderquest K, Koziell A. Genes and podocytes - new insights into mechanisms of podocytopathy. Front Endocrinol (Lausanne). 2014;5:226.

    Google Scholar 

  43. Trautmann A, Bodria M, Ozaltin F, Gheisari A, Melk A, Azocar M, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: The PodoNet Registry Cohort. Clin J Am Soc Nephrol. 2015;10(4):592–600.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24(4):349–54.

    Article  CAS  PubMed  Google Scholar 

  45. Mrowka C, Schedl A. Wilms’ tumor suppressor gene WT1: from structure to renal pathophysiologic features. J Am Soc Nephrol. 2000;11 Suppl 16:S106–15.

    CAS  PubMed  Google Scholar 

  46. Buscher AK, Weber S. Educational paper: the podocytopathies. Eur J Pediatr. 2012;171(8):1151–60.

    Article  PubMed  Google Scholar 

  47. Boyer O, Benoit G, Gribouval O, Nevo F, Tete MJ, Dantal J, et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22(2):239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308(5729):1801–4.

    Article  CAS  PubMed  Google Scholar 

  49. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24(3):251–6.

    Article  CAS  PubMed  Google Scholar 

  50. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet. 2010;128(3):345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Friedman DJ, Pollak MR. Genetics of kidney failure and the evolving story of APOL1. J Clin Invest. 2011;121(9):3367–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Madhavan SM, O’Toole JF, Konieczkowski M, Ganesan S, Bruggeman LA, Sedor JR. APOL1 localization in normal kidney and nondiabetic kidney disease. J Am Soc Nephrol. 2011;22(11):2119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reeves-Daniel AM, DePalma JA, Bleyer AJ, Rocco MV, Murea M, Adams PL, et al. The APOL1 gene and allograft survival after kidney transplantation. Am J Transplant. 2011;11(5):1025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee BT, Kumar V, Williams TA, Abdi R, Bernhardy A, Dyer C, et al. The APOL1 genotype of African American kidney transplant recipients does not impact 5-year allograft survival. Am J Transplant. 2012;12(7):1924–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Freedman BI, Julian BA, Pastan SO, Israni AK, Schladt D, Gautreaux MD, et al. Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure. Am J Transplant. 2015;15(6):1615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80(1):93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–81.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hemmelgarn BR, Manns BJ, Lloyd A, James MT, Klarenbach S, Quinn RR, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303(5):423–9.

    Article  CAS  PubMed  Google Scholar 

  60. Andrews PM. A scanning and transmission electron microscopic comparison of puromycin aminonucleoside-induced nephrosis to hyperalbuminemia-induced proteinuria with emphasis on kidney podocyte pedicel loss. Lab Invest. 1977;36(2):183–97.

    CAS  PubMed  Google Scholar 

  61. Davies DJ, Messina A, Thumwood CM, Ryan GB. Glomerular podocytic injury in protein overload proteinuria. Pathology. 1985;17(3):412–9.

    Article  CAS  PubMed  Google Scholar 

  62. Abbate M, Zoja C, Morigi M, Rottoli D, Angioletti S, Tomasoni S, et al. Transforming growth factor-β1 is up-regulated by podocytes in response to excess intraglomerular passage of proteins: a central pathway in progressive glomerulosclerosis. Am J Pathol. 2002;161(6):2179–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Okamura K, Dummer P, Kopp J, Qiu L, Levi M, Faubel S, et al. Endocytosis of albumin by podocytes elicits an inflammatory response and induces apoptotic cell death. PLoS One. 2013;8(1), e54817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida S, Nagase M, Shibata S, Fujita T. Podocyte injury induced by albumin overload in vivo and in vitro: involvement of TGF-beta and p38 MAPK. Nephron Exp Nephrol. 2008;108(3):e57–68.

    Article  CAS  PubMed  Google Scholar 

  65. Morigi M, Buelli S, Angioletti S, Zanchi C, Longaretti L, Zoja C, et al. In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. Am J Pathol. 2005;166(5):1309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He F, Chen S, Wang H, Shao N, Tian X, Jiang H, et al. Regulation of CD2-associated protein influences podocyte endoplasmic reticulum stress-mediated apoptosis induced by albumin overload. Gene. 2011;484(1–2):18–25.

    Article  CAS  PubMed  Google Scholar 

  67. Agrawal S, Guess AJ, Chanley MA, Smoyer WE. Albumin-induced podocyte injury and protection are associated with regulation of COX-2. Kidney Int. 2014;86(6):1150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Blaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dobrinskikh, E., Blaine, J. (2016). Glomerular Mechanisms of Proteinuria. In: Blaine, J. (eds) Proteinuria: Basic Mechanisms, Pathophysiology and Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-43359-2_2

Download citation

Publish with us

Policies and ethics