Advertisement

Evaluation and Epidemiology of Proteinuria

Chapter
  • 1.1k Downloads

Abstract

Proteinuria is a strong and independent predictor of increased risk of kidney disease progression and cardiovascular morbidity and mortality. Urinary excretion of protein >150 mg a day is considered to be a marker of kidney damage and to significantly increase the risk of progression to end stage renal disease. Epidemiological studies, however, suggest that excretion of as little as 10 mg/day of protein in the urine is associated with increased risk of kidney failure. There are several methods for measuring protein or albumin excretion in the urine including the spot urine protein-to-creatinine ratio (UPCR), the urine albumin-to-creatinine ratio (UACR), the urine dipstick and the 24 h urine collection. Of these, the 24 h urine collection is considered to be the gold standard. Proteinuria may be transient or persistent. While transient proteinuria is almost always benign, persistent proteinuria may be due to several different causes including primary glomerular diseases and systemic disorders that damage the kidneys.

Keywords

Proteinuria Albuminuria Nephrotic syndrome Urine protein-to-creatinine ratio Kidney disease progression 

Abbreviations

AASK

African-American Study of Kidney Disease and Hypertension

ACE-I

Angiotensin converting enzyme inhibitor

AKI

Acute kidney injury

ARB

Angiotensin receptor blocker

CRIC

Chronic Renal Insufficiency Cohort

eGFR

Estimated glomerular filtration rate

ERAs

Endothelin receptor antagonists

ESRD

End stage renal disease

FSGS

Focal segmental glomerulosclerosis

MDRD

Modification of Diet in Renal Disease

NHANES

National Health and Nutrition Examination Survey

RAA

Renin angiotensin aldosterone system

RAS

Renin angiotensin system

REIN

Ramipril Efficacy in Nephropathy

UACR

Urine albumin-to-creatinine ratio

UPCR

Urine protein-to-creatinine ratio

References

  1. 1.
    Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80(1):93–104.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Hemmelgarn BR, Manns BJ, Lloyd A, James MT, Klarenbach S, Quinn RR, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303(5):423–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Viswanathan G, Upadhyay A. Assessment of proteinuria. Adv Chronic Kidney Dis. 2011;18(4):243–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Carroll MF, Temte JL. Proteinuria in adults: a diagnostic approach. Am Fam Physician. 2000;62(6):1333–40.PubMedGoogle Scholar
  6. 6.
    Agarwal R, Panesar A, Lewis RR. Dipstick proteinuria: can it guide hypertension management? Am J Kidney Dis. 2002;39(6):1190–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Tapp DC, Copley JB. Effect of red blood cell lysis on protein quantitation in hematuric states. Am J Nephrol. 1988;8(3):190–3.CrossRefPubMedGoogle Scholar
  8. 8.
    Simerville JA, Maxted WC, Pahira JJ. Urinalysis: a comprehensive review. Am Fam Physician. 2005;71(6):1153–62.PubMedGoogle Scholar
  9. 9.
    Schwab SJ, Christensen RL, Dougherty K, Klahr S. Quantitation of proteinuria by the use of protein-to-creatinine ratios in single urine samples. Arch Intern Med. 1987;147(5):943–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Teruel JL, Villafruela JJ, Naya MT, Ortuno J. Correlation between protein-to-creatinine ratio in a single urine sample and daily protein excretion. Arch Intern Med. 1989;149(2):467.CrossRefPubMedGoogle Scholar
  11. 11.
    Wahbeh AM. Spot urine protein-to-creatinine ratio compared with 24-hour urinary protein in patients with kidney transplant. Exp Clin Transplant. 2014;12(4):300–3.PubMedGoogle Scholar
  12. 12.
    Wahbeh AM, Ewais MH, Elsharif ME. Comparison of 24-hour urinary protein and protein-to-creatinine ratio in the assessment of proteinuria. Saudi J Kidney Dis Transpl. 2009;20(3):443–7.PubMedGoogle Scholar
  13. 13.
    Ginsberg JM, Chang BS, Matarese RA, Garella S. Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med. 1983;309(25):1543–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–47.CrossRefPubMedGoogle Scholar
  15. 15.
    Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA. 2012;308(22):2349–60.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang M, Matsushita K, Sang Y, Ballew SH, Astor BC, Coresh J. Association of kidney function and albuminuria with prevalent and incident hypertension: the Atherosclerosis Risk in Communities (ARIC) study. Am J Kidney Dis. 2015;65(1):58–66.CrossRefPubMedGoogle Scholar
  17. 17.
    Iseki K, Iseki C, Ikemiya Y, Fukiyama K. Risk of developing end-stage renal disease in a cohort of mass screening. Kidney Int. 1996;49(3):800–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Ruggenenti P, Perna A, Mosconi L, Matalone M, Pisoni R, Gaspari F, et al. Proteinuria predicts end-stage renal failure in non-diabetic chronic nephropathies. The "Gruppo Italiano di Studi Epidemiologici in Nefrologia" (GISEN). Kidney Int Suppl. 1997;63:S54–7.PubMedGoogle Scholar
  19. 19.
    Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995;123(10):754–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Lea J, Greene T, Hebert L, Lipkowitz M, Massry S, Middleton J, et al. The relationship between magnitude of proteinuria reduction and risk of end-stage renal disease: results of the African American study of kidney disease and hypertension. Arch Intern Med. 2005;165(8):947–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012;380(9854):1662–73.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sandsmark DK, Messe SR, Zhang X, Roy J, Nessel L, Lee Hamm L, et al. Proteinuria, but not eGFR, predicts stroke risk in chronic kidney disease: Chronic Renal Insufficiency Cohort Study. Stroke. 2015;46(8):2075–80.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Toyama T, Furuichi K, Ninomiya T, Shimizu M, Hara A, Iwata Y, et al. The impacts of albuminuria and low eGFR on the risk of cardiovascular death, all-cause mortality, and renal events in diabetic patients: meta-analysis. PLoS One. 2013;8(8), e71810.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Perkovic V, Verdon C, Ninomiya T, Barzi F, Cass A, Patel A, et al. The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med. 2008;5(10), e207.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Grams ME, Sang Y, Ballew SH, Gansevoort RT, Kimm H, Kovesdy CP, et al. A meta-analysis of the association of estimated gfr, albuminuria, age, race, and sex with acute kidney injury. Am J Kidney Dis. 2015.Google Scholar
  26. 26.
    Leung AK, Wong AH. Proteinuria in children. Am Fam Physician. 2010;82(6):645–51.PubMedGoogle Scholar
  27. 27.
    Ariceta G. Clinical practice: proteinuria. Eur J Pediatr. 2011;170(1):15–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Wingo CS, Clapp WL. Proteinuria: potential causes and approach to evaluation. Am J Med Sci. 2000;320(3):188–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Bjorck S, Mulec H, Johnsen SA, Norden G, Aurell M. Renal protective effect of enalapril in diabetic nephropathy. BMJ. 1992;304(6823):339–43.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Cravedi P, Ruggenenti P, Remuzzi G. Proteinuria should be used as a surrogate in CKD. Nat Rev Nephrol. 2012;8(5):301–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997;349(9069):1857–63.Google Scholar
  33. 33.
    Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.CrossRefPubMedGoogle Scholar
  34. 34.
    Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547–53.CrossRefPubMedGoogle Scholar
  35. 35.
    Cheng J, Zhang W, Zhang X, Han F, Li X, He X, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis. JAMA Intern Med. 2014;174(5):773–85.CrossRefPubMedGoogle Scholar
  36. 36.
    Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 2014;86(5):896–904.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Saleh MA, Boesen EI, Pollock JS, Savin VJ, Pollock DM. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension. 2010;56(5):942–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):527–35.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Renal Diseases and HypertensionUniversity of Colorado DenverAuroraUSA

Personalised recommendations