Skip to main content
  • 1209 Accesses

Abstract

Proteinuria is a strong and independent predictor of increased risk of kidney disease progression and cardiovascular morbidity and mortality. Urinary excretion of protein >150 mg a day is considered to be a marker of kidney damage and to significantly increase the risk of progression to end stage renal disease. Epidemiological studies, however, suggest that excretion of as little as 10 mg/day of protein in the urine is associated with increased risk of kidney failure. There are several methods for measuring protein or albumin excretion in the urine including the spot urine protein-to-creatinine ratio (UPCR), the urine albumin-to-creatinine ratio (UACR), the urine dipstick and the 24 h urine collection. Of these, the 24 h urine collection is considered to be the gold standard. Proteinuria may be transient or persistent. While transient proteinuria is almost always benign, persistent proteinuria may be due to several different causes including primary glomerular diseases and systemic disorders that damage the kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AASK:

African-American Study of Kidney Disease and Hypertension

ACE-I:

Angiotensin converting enzyme inhibitor

AKI:

Acute kidney injury

ARB:

Angiotensin receptor blocker

CRIC:

Chronic Renal Insufficiency Cohort

eGFR:

Estimated glomerular filtration rate

ERAs:

Endothelin receptor antagonists

ESRD:

End stage renal disease

FSGS:

Focal segmental glomerulosclerosis

MDRD:

Modification of Diet in Renal Disease

NHANES:

National Health and Nutrition Examination Survey

RAA:

Renin angiotensin aldosterone system

RAS:

Renin angiotensin system

REIN:

Ramipril Efficacy in Nephropathy

UACR:

Urine albumin-to-creatinine ratio

UPCR:

Urine protein-to-creatinine ratio

References

  1. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80(1):93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.

    Article  PubMed  Google Scholar 

  3. Hemmelgarn BR, Manns BJ, Lloyd A, James MT, Klarenbach S, Quinn RR, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303(5):423–9.

    Article  CAS  PubMed  Google Scholar 

  4. Viswanathan G, Upadhyay A. Assessment of proteinuria. Adv Chronic Kidney Dis. 2011;18(4):243–8.

    Article  PubMed  Google Scholar 

  5. Carroll MF, Temte JL. Proteinuria in adults: a diagnostic approach. Am Fam Physician. 2000;62(6):1333–40.

    CAS  PubMed  Google Scholar 

  6. Agarwal R, Panesar A, Lewis RR. Dipstick proteinuria: can it guide hypertension management? Am J Kidney Dis. 2002;39(6):1190–5.

    Article  PubMed  Google Scholar 

  7. Tapp DC, Copley JB. Effect of red blood cell lysis on protein quantitation in hematuric states. Am J Nephrol. 1988;8(3):190–3.

    Article  CAS  PubMed  Google Scholar 

  8. Simerville JA, Maxted WC, Pahira JJ. Urinalysis: a comprehensive review. Am Fam Physician. 2005;71(6):1153–62.

    PubMed  Google Scholar 

  9. Schwab SJ, Christensen RL, Dougherty K, Klahr S. Quantitation of proteinuria by the use of protein-to-creatinine ratios in single urine samples. Arch Intern Med. 1987;147(5):943–4.

    Article  CAS  PubMed  Google Scholar 

  10. Teruel JL, Villafruela JJ, Naya MT, Ortuno J. Correlation between protein-to-creatinine ratio in a single urine sample and daily protein excretion. Arch Intern Med. 1989;149(2):467.

    Article  CAS  PubMed  Google Scholar 

  11. Wahbeh AM. Spot urine protein-to-creatinine ratio compared with 24-hour urinary protein in patients with kidney transplant. Exp Clin Transplant. 2014;12(4):300–3.

    PubMed  Google Scholar 

  12. Wahbeh AM, Ewais MH, Elsharif ME. Comparison of 24-hour urinary protein and protein-to-creatinine ratio in the assessment of proteinuria. Saudi J Kidney Dis Transpl. 2009;20(3):443–7.

    PubMed  Google Scholar 

  13. Ginsberg JM, Chang BS, Matarese RA, Garella S. Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med. 1983;309(25):1543–6.

    Article  CAS  PubMed  Google Scholar 

  14. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–47.

    Article  CAS  PubMed  Google Scholar 

  15. Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA. 2012;308(22):2349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang M, Matsushita K, Sang Y, Ballew SH, Astor BC, Coresh J. Association of kidney function and albuminuria with prevalent and incident hypertension: the Atherosclerosis Risk in Communities (ARIC) study. Am J Kidney Dis. 2015;65(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  17. Iseki K, Iseki C, Ikemiya Y, Fukiyama K. Risk of developing end-stage renal disease in a cohort of mass screening. Kidney Int. 1996;49(3):800–5.

    Article  CAS  PubMed  Google Scholar 

  18. Ruggenenti P, Perna A, Mosconi L, Matalone M, Pisoni R, Gaspari F, et al. Proteinuria predicts end-stage renal failure in non-diabetic chronic nephropathies. The "Gruppo Italiano di Studi Epidemiologici in Nefrologia" (GISEN). Kidney Int Suppl. 1997;63:S54–7.

    CAS  PubMed  Google Scholar 

  19. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995;123(10):754–62.

    Article  CAS  PubMed  Google Scholar 

  20. Lea J, Greene T, Hebert L, Lipkowitz M, Massry S, Middleton J, et al. The relationship between magnitude of proteinuria reduction and risk of end-stage renal disease: results of the African American study of kidney disease and hypertension. Arch Intern Med. 2005;165(8):947–53.

    Article  PubMed  Google Scholar 

  21. Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012;380(9854):1662–73.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sandsmark DK, Messe SR, Zhang X, Roy J, Nessel L, Lee Hamm L, et al. Proteinuria, but not eGFR, predicts stroke risk in chronic kidney disease: Chronic Renal Insufficiency Cohort Study. Stroke. 2015;46(8):2075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toyama T, Furuichi K, Ninomiya T, Shimizu M, Hara A, Iwata Y, et al. The impacts of albuminuria and low eGFR on the risk of cardiovascular death, all-cause mortality, and renal events in diabetic patients: meta-analysis. PLoS One. 2013;8(8), e71810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perkovic V, Verdon C, Ninomiya T, Barzi F, Cass A, Patel A, et al. The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med. 2008;5(10), e207.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grams ME, Sang Y, Ballew SH, Gansevoort RT, Kimm H, Kovesdy CP, et al. A meta-analysis of the association of estimated gfr, albuminuria, age, race, and sex with acute kidney injury. Am J Kidney Dis. 2015.

    Google Scholar 

  26. Leung AK, Wong AH. Proteinuria in children. Am Fam Physician. 2010;82(6):645–51.

    PubMed  Google Scholar 

  27. Ariceta G. Clinical practice: proteinuria. Eur J Pediatr. 2011;170(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  28. Wingo CS, Clapp WL. Proteinuria: potential causes and approach to evaluation. Am J Med Sci. 2000;320(3):188–94.

    Article  CAS  PubMed  Google Scholar 

  29. Bjorck S, Mulec H, Johnsen SA, Norden G, Aurell M. Renal protective effect of enalapril in diabetic nephropathy. BMJ. 1992;304(6823):339–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.

    Article  CAS  PubMed  Google Scholar 

  31. Cravedi P, Ruggenenti P, Remuzzi G. Proteinuria should be used as a surrogate in CKD. Nat Rev Nephrol. 2012;8(5):301–6.

    Article  CAS  PubMed  Google Scholar 

  32. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997;349(9069):1857–63.

    Google Scholar 

  33. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Article  CAS  PubMed  Google Scholar 

  34. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547–53.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng J, Zhang W, Zhang X, Han F, Li X, He X, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis. JAMA Intern Med. 2014;174(5):773–85.

    Article  CAS  PubMed  Google Scholar 

  36. Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 2014;86(5):896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saleh MA, Boesen EI, Pollock JS, Savin VJ, Pollock DM. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension. 2010;56(5):942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Blaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blaine, J. (2016). Evaluation and Epidemiology of Proteinuria. In: Blaine, J. (eds) Proteinuria: Basic Mechanisms, Pathophysiology and Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-43359-2_1

Download citation

Publish with us

Policies and ethics