Skip to main content

RNA Sequencing Applied to Livestock Production

  • Chapter
  • First Online:
Systems Biology in Animal Production and Health, Vol. 1

Abstract

High-throughput sequencing technology is rapidly replacing expression arrays and becoming the standard method for global expression profiling studies. The development of low-cost, rapid sequencing technologies has enabled detailed quantification of gene expression levels, affecting almost every field in the life sciences. In this chapter, we will overview the key points for gene expression analysis using RNA-seq data. First, we will discuss the workflows of RNA-seq data analysis followed by a discussion about the currently available tools for data analysis and a comparison between these tools. The chapter concludes with a discussion about the application of RNA-seq data analysis in livestock. In the appendix, using an example from livestock RNA-seq data, we show a simple script for RNA-seq data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamancos GP, Agirre E, Eyras E (2014) Methods to study splicing from high-throughput RNA Sequencing data. In: Spliceosomal pre-mRNA splicing: methods and protocols. Humana Press, New York, pp 357–397

    Google Scholar 

  • Alamancos GP, Pagès A, Trincado JL, Bellora N, Eyras E (2015) Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA 21:1521–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22:2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2014) HTSeq–A Python framework to work with high-throughput sequencing data. Bioinformatics btu638

    Google Scholar 

  • Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA, Maller JB, Tukiainen T, Lek M (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660

    Article  Google Scholar 

  • Aschoff M, Hotz-Wagenblatt A, Glatting KH, Fischer M, Eils R, König R (2013) SplicingCompass: differential splicing detection using RNA-Seq data. Bioinformatics btt101

    Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au KF, Jiang H, Lin L, Xing Y, Wong WH (2010) Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res 38:4570–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin RL, Li RW, Li CJ, Thomson JM, Bequette BJ (2012) Characterization of the longissimus lumborum transcriptome response to adding propionate to the diet of growing Angus beef steers. Physiol Genomics 44(10):543–550

    Article  CAS  PubMed  Google Scholar 

  • Behr J, Kahles A, Zhong Y, Sreedharan VT, Drewe P, Rätsch G (2013) MITIE: simultaneous RNA-Seq-based transcript identification and quantification in multiple samples. Bioinformatics 29:2529–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Davuluri RV (2013) NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data. BMC Bioinformatics 14:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics btu170

    Google Scholar 

  • Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT (2013) Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 29:656–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai G, Li H, Lu Y, Huang X, Lee J, Müller P, Ji Y, Liang S (2012) Accuracy of RNA-Seq and its dependence on sequencing depth. BMC Bioinformatics 13:S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cánovas A, Rincón G, Bevilacqua C, Islas-Trejo A, Brenaut P, Hovey RC, Boutinaud M, Morgenthaler C, VanKlompenberg MK, Martin P (2014) Comparison of five different RNA sources to examine the lactating bovine mammary gland transcriptome using RNA-Sequencing. Sci Rep 4

    Google Scholar 

  • Chen G, Wang C, Shi T (2011) Overview of available methods for diverse RNA-Seq data analyses. Sci China Life Sci 54:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Li W, Du M, Wu M, Cao B (2015) Sequencing and characterization of divergent marbling levels in the beef cattle (Longissimus dorsi muscle) transcriptome. Asian-Australas J Anim Sci 28:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung LM, Ferguson JP, Zheng W, Qian F, Bruno V, Montgomery RR, Zhao H (2013) Differential expression analysis for paired RNA-seq data. BMC Bioinformatics 14:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B (2010) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res gkq1018

    Google Scholar 

  • Cui X, Hou Y, Yang S, Xie Y, Zhang S, Zhang Y, Zhang Q, Lu X, Liu GE, Sun D (2014) Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genomics 15:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, Pritchard JK (2009) Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25:3207–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhomme N, Padioleau I, Furlong EE, Steinmetz LM (2012) easyRNASeq: a bioconductor package for processing RNA-Seq data. Bioinformatics 28:2532–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Driver AM, Peñagaricano F, Huang W, Ahmad KR, Hackbart KS, Wiltbank MC, Khatib H (2012) RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo-and in vitro-derived bovine blastocysts. BMC Genomics 13:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Z, Martin J, Wang Z (2012) Statistical methods for identifying differentially expressed genes in RNA-Seq experiments. Cell Biosci 2:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filloux C, Cédric M, Romain P, Lionel F, Christophe K, Dominique R, Abderrahman M, Daniel P (2014) An integrative method to normalize RNA-Seq data. BMC Bioinformatics 15:188

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT (2015) Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol 33:243–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Sodhi SS, Song KD, Kim JH, Mongre RK, Sharma N, Singh NK, Kim SW, Lee HK, Jeong DK (2015) Evaluation of body growth and immunity‐related differentially expressed genes through deep RNA sequencing in the piglets of Jeju native pig and Berkshire. Anim Genet 46:255–264

    Article  CAS  PubMed  Google Scholar 

  • Glaus P, Honkela A, Rattray M (2012) Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics 28:1721–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  PubMed  PubMed Central  Google Scholar 

  • Gondro C (2015) Primer to analysis of genomic data using R. Springer, Cham

    Book  Google Scholar 

  • Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38, e131

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen KD, Irizarry RA, Zhijin WU (2012) Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13:204–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardcastle TJ, Kelly KA (2010) bayseq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422

    Article  PubMed  PubMed Central  Google Scholar 

  • He H, Liu X (2013) Characterization of transcriptional complexity during longissimus muscle development in bovines using high-throughput sequencing. PLoS One 8, e64356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heap GA, Yang JH, Downes K, Healy BC, Hunt KA, Bockett N, Franke L, Dubois PC, Mein CA, Dobson RJ (2010) Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing. Hum Mol Genet 19:122–134

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Khatib H (2010) Comparison of transcriptomic landscapes of bovine embryos using RNA-Seq. BMC Genomics 11:711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:W169–W175

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia C, Guan W, Yang A, Xiao R, Tang WH, Moravec CS, Margulies KB, Cappola TP, Li M, Li C (2015) MetaDiff: differential isoform expression analysis using random-effects meta-regression. BMC Bioinformatics 16:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Wong WH (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24:2395–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D, Cambisano N, Davis SR, Farnir F, Grisart B (2011) Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 43:405–413

    Article  CAS  PubMed  Google Scholar 

  • Karisa BK, Thomson J, Wang Z, Stothard P, Moore SS, Plastow GS (2013) Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle. J Anim Sci 91:3502–3513

    Article  CAS  PubMed  Google Scholar 

  • Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korpelainen E, Tuimala J, Somervuo P, Huss M, Wong G (2014) RNA-seq data analysis: a practical approach. CRC Press, Boca Raton

    Google Scholar 

  • Krämer A, Green J, Pollard J, Tugendreich S (2013) Causal analysis approaches in ingenuity pathway analysis (IPA). Bioinformatics btt703

    Google Scholar 

  • Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99:248–256

    Article  PubMed  Google Scholar 

  • Ladomery MR (2014) Targeting alternative splicing in human genetic disease. RNA Nanotechnol 331

    Google Scholar 

  • Laiho A, Elo LL (2014) A note on an exon-based strategy to identify differentially expressed genes in RNA-Seq experiments. PLoS One 9, e115964

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Jang M, Kim H, Kwak W, Park WC, Hwang JY, Lee CK, Jang GW, Park MN, Kim HC (2013) Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the depot-specific adipogenesis in cattle. PLoS One 8, e66267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Park HS, Kim W, Yoon D, Seo S (2014) Comparison of metabolic network between muscle and intramuscular adipose tissues in Hanwoo beef cattle using a systems biology approach. Int J Genomics 2014:679437

    PubMed  PubMed Central  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chen C, Shen E, Zhao F, Sun Z, Wu J (2012) Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer. Genomics 99:178–182

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304

    Article  CAS  PubMed  Google Scholar 

  • Liu GF, Cheng HJ, You W, Song EL, Liu XM, Wan FC (2015) Transcriptome profiling of muscle by RNA-Seq reveals significant differences in digital gene expression profiling between Angus and Luxi cattle. Anim Prod Sci 55:1172–1178

    Google Scholar 

  • Maretty L, Sibbesen JA, Krogh A (2014) Bayesian transcriptome assembly. Genome Biol 15:501

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni G, Kogelman LJA, Suravajhala P, Kadarmideen HN (2015) Systems genetics of complex diseases using RNA-sequencing methods. Int J Biosci Biochem Bioinformatics 5:264

    Article  Google Scholar 

  • McCabe M, Waters S, Morris D, Kenny D, Lynn D, Creevey C (2012) RNA-seq analysis of differential gene expression in liver from lactating dairy cows divergent in negative energy balance. BMC Genomics 13:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res gks042

    Google Scholar 

  • McIntyre LM, Lopiano KK, Morse AM, Amin V, Oberg AL, Young LJ, Nuzhdin SV (2011) RNA-seq: technical variability and sampling. BMC Genomics 12:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ (2015) The human transcriptome across tissues and individuals. Science 348:660–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD (2010) PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res 38:D204–D210

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Qin QLX (2015) Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and Small Tail Han sheep to explore the regulation of fecundity. Mol Cell Endocrinol 402:32–42

    Article  CAS  PubMed  Google Scholar 

  • Morgan M, Pagès H, Obenchain V, Hayden N (2016) Rsamtools: binary alignment (BAM), FASTA, variant call (BCF), and tabix file import

    Google Scholar 

  • Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ, McDonald H, Varhol R, Jones SJ, Marra MA (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45:81

    Article  CAS  PubMed  Google Scholar 

  • Pastinen T (2010) Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet 11:533–538

    Article  CAS  PubMed  Google Scholar 

  • Patro R, Mount SM, Kingsford C (2014) Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol 32:462–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanan VK, Shen L, Moore JH, Saykin AJ (2012) Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet 28:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castelló A, Ballester M, Estellé J, Ibáñez-Escriche N, Fernández AI, Pérez-Enciso M (2012) Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genomics 13:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsköld D, Kavak E, Sandberg R (2012) How to Analyze Gene Expression Using RNA-Sequencing Data. In: Next Generation Microarray Bioinformatics: Methods and Protocols (eds. by Wang J, Tan CA and Tian T), Humana Press, Totowa, NJ. Springer, pp 259–274

    Google Scholar 

  • Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14:R95

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasche A, Lienhard M, Yaspo M-L, Lehrach H, Herwig R (2014) ARH-seq: identification of differential splicing in RNA-seq data. Nucleic Acids Res 42:e110

    Google Scholar 

  • Risso D, Schwartz K, Sherlock G, Dudoit S (2011) GC-content normalization for RNA-Seq data. BMC Bioinformatics 12:480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropka‐Molik K, Żukowski K, Eckert R, Gurgul A, Piórkowska K, Oczkowicz M (2014) Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA‐Seq method. Anim Genet 45:674–684

    Article  PubMed  Google Scholar 

  • Satya RV, Zavaljevski N, Reifman J (2012) A new strategy to reduce allelic bias in RNA-Seq readmapping. Nucleic Acids Res gks425

    Google Scholar 

  • Seyednasrollah F, Laiho A, Elo LL (2013) Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings Bioinf bbt086

    Google Scholar 

  • Shen S, Park JW, Huang J, Dittmar KA, Lu Z-x, Zhou Q, Carstens RP, Xing Y (2012) MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res gkr1291

    Google Scholar 

  • Shi Y, Jiang H (2013) rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test. http://dx.doi.org/10.1371/journal.pone.0079448

  • Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132

    Article  CAS  PubMed  Google Scholar 

  • Sterne-Weiler T, Sanford JR (2014) Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol 15:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevenson KR, Coolon JD, Wittkopp PJ (2013) Sources of bias in measures of allele-specific expression derived from RNA-seq data aligned to a single reference genome. BMC Genomics 14:536

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21:2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasnim M, Ma S, Yang EW, Jiang T, Li W (2015) Accurate inference of isoforms from multiple sample RNA-Seq data. BMC Genomics 16:S15

    Article  PubMed  PubMed Central  Google Scholar 

  • Tizioto PC, Coutinho LL, Decker JE, Schnabel RD, Rosa KO, Oliveira PS, Souza MM, Mourão GB, Tullio RR, Chaves AS (2015) Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes. BMC Genomics 16:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53

    Article  CAS  PubMed  Google Scholar 

  • van de Wiel MA, Neerincx M, Buffart TE, Sie D, Verheul HMW (2014) ShrinkBayes: a versatile R-package for analysis of count-based sequencing data in complex study designs. BMC Bioinformatics 15:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitting-Seerup K, Porse BT, Sandelin A, Waage J (2014) spliceR: an R package for classification of alternative splicing and prediction of coding potential from RNA-seq data. BMC Bioinformatics 15:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Cairns MJ (2013) Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing. BMC Bioinformatics 14:S16

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38, e178

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ghaffari N, Johnson CD, Braga-Neto UM, Wang H, Chen R, Zhou H (2011) Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens. BMC Bioinformatics 12:S5

    CAS  Google Scholar 

  • Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesolowski S, Birtwistle MR, Rempala GA (2013) A comparison of methods for RNA-Seq differential expression analysis and a new empirical Bayes approach. Biosensors 3:238–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GW, Stein LD (2015) RNASequel: accurate and repeat tolerant realignment of RNA-seq reads. Nucleic Acids Res gkv594

    Google Scholar 

  • Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK, Robinson GJ, Lundberg AE, Bartlett PF, Wray NR (2014) A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS One 9, e103207

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou YH, Xia K, Wright FA (2011) A powerful and flexible approach to the analysis of RNA sequence count data. Bioinformatics 27:2672–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou A, Breese MR, Hao Y, Edenberg HJ, Li L, Skaar TC, Liu Y (2012) Alt Event Finder: a tool for extracting alternative splicing events from RNA-seq data. BMC Genomics 13:S10

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by an Australian Research Council Discovery Project (DP130100542), the Next-Generation BioGreen 21 Program (no. PJ01134906), the Rural Development Administration, the Republic of Korea, and the Cooperative Research Program for Agriculture Science and Technology Development (PJ006405), RDA, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric Gondro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de las Heras-Saldana, S., Al-Mamun, H.A., Ferdosi, M.H., Khansefid, M., Gondro, C. (2016). RNA Sequencing Applied to Livestock Production. In: Kadarmideen, H. (eds) Systems Biology in Animal Production and Health, Vol. 1. Springer, Cham. https://doi.org/10.1007/978-3-319-43335-6_4

Download citation

Publish with us

Policies and ethics