Skip to main content

Depicting Gene Co-expression Networks Underlying eQTLs

  • Chapter
  • First Online:
Systems Biology in Animal Production and Health, Vol. 2

Abstract

Deciphering the biological mechanisms underlying a list of genes whose expression is under partial genetic control (i.e., having at least one eQTL) may not be as easy as for a list of differential genes. Indeed, no specific phenotype (e.g., health or production phenotype) is linked to the list of transcripts under study. There is a need to find a coherent biological interpretation of a list of genes under (partial) genetic control. We propose a pipeline using appropriate statistical tools to build a co-expression network from the list of genes, then to finely depict the network structure. Graphical models are relevant because they are based on partial correlations, closely linked with causal dependencies. Highly connected genes (hubs) and genes that are important for the global structure of the network (genes with high betweenness) are often biologically meaningful. Extracting modules of genes that are highly connected permits a significant enrichment in one biological function for each module, thus linking statistical results with biological significance. This approach has been previously used on a pig eQTL dataset (Villa-Vialaneix et al. 2013) and was proven to be highly relevant. Throughout the present chapter, we define statistical notions linked with network theory, and apply them on a reduced dataset of genes with eQTL that were found in the pig species to illustrate the basics of network inference and mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cran.r-project.org/web/views/gR.html.

  2. 2.

    http://cran.r-project.org/web/packages/huge.

  3. 3.

    https://cran.r-project.org/web/packages/GeneNet.

  4. 4.

    http://gephi.org.

  5. 5.

    http://tulip.labri.fr.

  6. 6.

    http://www.cytoscape.org.

  7. 7.

    The number of pairs for a set of n objects is equal to \( \frac{n\left(n-1\right)}{2} \).

  8. 8.

    The modularity maximization is an intractable problem which can be solved only for small networks. For large networks, fast algorithms are usually used to find an approximate solution.

  9. 9.

    As the algorithm is partially stochastic, it has been run 100 times and only the best result has been kept.

  10. 10.

    http://www.ncbi.nlm.nih.gov/geo.

  11. 11.

    https://www.ebi.ac.uk/arrayexpress.

  12. 12.

    http://geneontology.org.

  13. 13.

    http://www.genome.jp/kegg.

  14. 14.

    https://david.ncifcrf.gov.

  15. 15.

    https://david.ncifcrf.gov/ease/ease1.htm.

  16. 16.

    http://www.ensembl.org/biomart/martview/79399dc2f5745752a66a5a4a43f32a38.

  17. 17.

    http://string-db.org.

  18. 18.

    http://genecodis.cnb.csic.es.

  19. 19.

    http://bioinfo.vanderbilt.edu/webgestalt.

  20. 20.

    https://david.ncifcrf.gov.

  21. 21.

    http://www.ingenuity.com/products/ipa.

  22. 22.

    http://geneontology.org.

  23. 23.

    http://www.genome.jp/kegg.

  24. 24.

    http://www.broadinstitute.org/gsea/msigdb.

  25. 25.

    http://omictools.com/transcriptomics-c1178-p1.html.

  26. 26.

    http://bioinfo.vanderbilt.edu/webgestalt.

  27. 27.

    http://genecodis.cnb.csic.es/analysis.

  28. 28.

    https://gephi.github.io.

References

  • Auber D (2003) Tulip: a huge graph visualisation framework. In: Mutzel P, Jünger M (eds) Graph Drawing Softwares, Mathematics and Visualization. Berlin, Heidelberg: Springer, pp 105–126

    Google Scholar 

  • Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: E.e.a. Adar (ed) Proceedings of the Third International AAAI Conference on Weblogs and Social Media, pp 361–362. Menlo Park: AAAI Press. URL http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B 57:289–300

    Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball C, Causton H, Gaasterland T, Glenisson P, Holstege F, Kim I, Markowitz V, Matese J, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (miame)-toward standards for microarray data. Nat Genet 29(4):365–371

    Article  CAS  PubMed  Google Scholar 

  • Butte A, Kohane I (1999) Unsupervised knowledge discovery in medical databases using relevance networks. In: Proceedings of the AMIA Symposium, pp 711–715

    Google Scholar 

  • Butte A, Kohane I (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Proceedings of the Pacific Symposium on Biocomputing, pp 418–429

    Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Systems. URL http://igraph.sf.net

  • Dorogovtsev S, Mendes J (2003) Evolution of Networks. From biological Nets to the Internet and WWW. Oxford University Press

    Google Scholar 

  • Dozmorov M, Giles C, Wren J (2011) Predicting gene ontology from a global meta-analysis of 1-color microarray experiments. BMC Bioinform 12(Supp 10):S14

    Article  Google Scholar 

  • Edwards D (1995) Introduction to graphical modelling. Springer, New York

    Book  Google Scholar 

  • Fisher R (1922) On the interpretation of x 2 from contingency tables, and the calculation of P. J Royal Stat Soc 85(1):87–94. doi:10.2307/2340521.JSTOR2340521

    Article  Google Scholar 

  • Fortunato S, Barthélémy M (2007) Resolution limit in community detection. In: Proceedings of the National Academy of Sciences, vol. 104, pp 36–41. doi:10.1073/pnas.0605965104; URL: http://www.pnas.org/content/104/1/36.abstract

    Google Scholar 

  • Foygel R, Drton M (2010) Extended Bayesian information criteria for Gaussian graphical models. In: Proceedings of Neural Information Processing Systems (NIPS 2010), pp 604–612. Vancouver

    Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441

    Article  PubMed  Google Scholar 

  • Fruchterman T, Reingold B (1991) Graph drawing by force-directed placement. Software Pract Exp 21:1129–1164

    Article  Google Scholar 

  • Gillis J, Pavlidis P (2012) “guilt by association” is the exception rather than the rule in gene networks. PlLoS Computational Biology 8(3):e1002,444

    Google Scholar 

  • da Huang W, Sherman B, Lempicki R (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res 37(1):1–13

    Article  Google Scholar 

  • Kogelman L, Zhernakova D, Westra H, Cirera S, Fredholm M, Franke L, Kadamideen H (2015) An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genom Med 7:105. doi:10.1186/s13073-015-0229-0

    Article  Google Scholar 

  • Liaubet L, Lobjois V, Faraut T, Tircazes A, Benne F, Iannuccelli N, Pires J, Glénisson J, Robic A, Le Roy P, SanCristobal M, Cherel P (2011) Genetic variability or transcript abundance in pig peri-mortem skeletal muscle: eQTL localized genes involved in stress response, cell death, muscle disorders and metabolism. BMC Genom 12(548):548

    Article  CAS  Google Scholar 

  • Liu H, Roeber K, Wasserman L (2010) Stability approach to regularization selection (StARS) for high dimensional graphical models. In: Proceedings of Neural Information Processing Systems (NIPS 2010), vol. 23, pp 1432–1440. Vancouver. URL http://machinelearning.wustl.edu/mlpapers/papers/NIPS2010_0834

  • Lysen S (2009) Permuted inclusion criterion: a variable selection technique. Ph.D. thesis, University of Pennsylvania

    Google Scholar 

  • Meinshausen N, Bühlmann P (2006) High dimensional graphs and variable selection with the lasso. Ann Stat 34(3):1436–1462

    Article  Google Scholar 

  • Montastier E, Villa-Vialaneix N, Caspar-Bauguil S, Hlavaty P, Tvrzicka E, Gonzalez I, Saris W, Langin D, Kunesova M, Viguerie N (2015) System model network for adipose tissue signatures related to weight changes in response to calorie restriction and subsequent weight maintenance. PLoS Comput Biol 11(1):e1004,047. doi:10.1371/journal.pcbi.1004047. First co-author

    Google Scholar 

  • Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026,113. doi:10.1103/PhysRevE.69.026113.URL, http://www.citebase.org/abstract?id=oai%3AarXiv.org%3Acond-mat%2F0308217

    Google Scholar 

  • Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74(016110)

    Google Scholar 

  • Rossi F, Villa-Vialaneix N (2011) Représentation d’un grand réseau à partir d’une classification hiérarchique de ses sommets. Journal de la Société Française de Statistique 152(3):34–65. URL http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/82/73

  • Schaeffer S (2007) Graph clustering. Comp Sci Rev 1(1):27–64

    Article  Google Scholar 

  • Schäfer J, Strimmer K (2005a) An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764. doi:10.1093/bioinformatics/bti062

    Article  PubMed  Google Scholar 

  • Schäfer J, Strimmer K (2005b) A shrinkage approach to large-scale covariance matrix estimation and implication for functional genomics. Stat Appl Genet Mol Biol 4:1–32

    Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa-Vialaneix N, Liaubet L, Laurent T, Cherel P, Gamot A, San Cristobal M (2013) The structure of a gene co-expression network reveals biological functions underlying eQTLs. PLoS One 8(4), e60,045. doi:10.1371/journal.pone.0060045

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Villa-Vialaneix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villa-Vialaneix, N., Liaubet, L., SanCristobal, M. (2016). Depicting Gene Co-expression Networks Underlying eQTLs. In: Kadarmideen, H. (eds) Systems Biology in Animal Production and Health, Vol. 2. Springer, Cham. https://doi.org/10.1007/978-3-319-43332-5_1

Download citation

Publish with us

Policies and ethics