Skip to main content

Lower Confidence Bounds for System Reliability from Binary Failure Data Using Bootstrapping

  • Chapter
  • First Online:
Book cover Computational Probability Applications

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 247))

  • 1238 Accesses

Abstract

Binary failure data are collected for each of the independent components in a coherent system. Bootstrapping is used to determine a (1 −α)100 % lower confidence bound on the system reliability. When a component with perfect test results is encountered, a beta prior distribution is used to avoid an overly optimistic lower bound.

Originally published in the Journal of Quality Technology, Volume 38 in 2006, this work uses APPL as one of its technologies that enabled the research. The initial problem arose in a reliability problem posed by engineers. This is the first publication that mentions using APPL to eliminate resampling error of bootstrap studies. The code relies on the procedures Transform and Product, to in effect establish a bootstrap with B = .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agresti, A., & Coull, B. (1998). Approximate is better than ‘exact’ for interval estimation of binomial proportions. The American Statistician, 52(395), 119–126.

    Google Scholar 

  2. Blyth, C. R. (1986). Approximate binomial confidence limits. Journal of the American Statistical Association, 81(395), 843–855.

    Article  Google Scholar 

  3. Chick, S. (2001). personal communication.

    Google Scholar 

  4. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York, NY: Chapman & Hall.

    Book  Google Scholar 

  5. Evans, G., Hastings, N., & Peacock, B. (2000). Statistical distributions (3rd ed.) New York: Wiley.

    Google Scholar 

  6. Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.). New York: McGraw–Hill.

    Google Scholar 

  7. Leemis, L. M., & Trivedi, K. S. (1996). A comparison of approximate interval estimators for the Bernoulli parameter. The American Statistician, 50(1), 63–68.

    Google Scholar 

  8. Mann, N. R., Schafer, R. E., & Singpurwalla, N. D. (1974). Methods for statistical analysis of reliability and life data. New York: Wiley.

    Google Scholar 

  9. Martin, M. A. (1990). On bootstrap iteration for coverage correction in confidence intervals. Journal of the American Statistical Association, 85(412), 1105–1118.

    Article  Google Scholar 

  10. Martz, H. F., & Duran, B. S. (1985). A comparison of three methods for calculating lower confidence limits on system reliability using binomial component data. IEEE Transactions on Reliability, 34(2), 113–120.

    Article  Google Scholar 

  11. Martz, H. F., & Waller, R. A. (1982). Bayesian reliability analysis. New York: Wiley.

    Google Scholar 

  12. Newcombe, R. G. (2001). Logit confidence intervals and the inverse sinh transformation. The American Statistician, 55(3), 200–202.

    Article  Google Scholar 

  13. Padgett, W. J., & Tomlinson, M. A. (2003). Lower confidence bounds for percentiles of Weibull and Birnbaum–Saunders distributions. Journal of Statistical Computation and Simulation, 73(6), 429–443.

    Article  Google Scholar 

  14. Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine, 12, 809–824.

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the helpful interactions with John Backes, Don Campbell, Mike Crawford, Mark Eaton, Jerry Ellis, Greg Gruver, Jim Scott, Bob Shumaker, Bill Treadwell, and Mark Vinson concerning the paper and helpful comments from two anonymous referees and the editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Leemis .

Editor information

Editors and Affiliations

Appendices

Appendix 1

S-Plus code for calculating a CP (1 −α)100 % lower confidence bound for a single component for n components on test and y passes. This function was used to generate the lower confidence bounds in Example 15.1.

> confintlower <- function(n, y, alpha) {

>   if (y == 0) {

>     pl <- 0

>   }

>   if (y == n) {

>     pl <- alpha ^ (1 / n)

>   }

>   if (y > 0 && y < n) {

>     fcrit1 <- qf(alpha, 2 * y, 2 * (n - y + 1))

>     pl <- 1 / (1 + (n - y + 1) / (y * fcrit1))

>   }

>   pl

> }

Appendix 2

S-Plus code for calculating a bootstrap (1 −α)100 % lower confidence interval bound for a k-component series system of independent components using B bootstrap replications. This implements the algorithm given in Table 15.2.

> seriessystemboot <- function(n, y, alpha) {

>   k <- length(n)

>   b <- 10000

>   z <- rep(1, b)

>

>   point <- prod(y) / prod(n)

>

>   for (j in 1:b) {

>     for (i in 1:k) {

>      z[j] <- z[j] * rbinom(1, n[i], y[i] / n[i]) / n[i]

>     }

>   }

>   z <- sort(z)

>   pl <- z[floor(alpha * b)]

>   c(point, pl)

> }

Appendix 3

APPL code for calculating a bootstrap (1 −α)100 % lower confidence interval bound for a k-component series system of independent components using the equivalent of B = + bootstrap replications.

> n1 := 23;

> y1 := 21;

> X1 := BinomialRV(n1, y1 / n1);

> X1 := Transform(X1, [[x -> x / n1], [-infinity, infinity]]);

> n2 := 28;

> y2 := 27;

> X2 := BinomialRV(n2, y2 / n2);

> X2 := Transform(X2, [[x -> x / n2], [-infinity, infinity]]);

> n3 := 84;

> y3 := 82;

> X3 := BinomialRV(n3, y3 / n3);

> X3 := Transform(X3, [[x -> x / n3], [-infinity, infinity]]);

> Temp := Product(X1, X2);

> T := Product(Temp, X3);

Appendix 4

S-Plus code for calculating a bootstrap (1 −α)100 % lower confidence interval bound for a k-component series system of independent component with some perfect component test results using B bootstrap replications. This implements the algorithm given in Table 15.3.

> seriessystembayesboot <- function(n, y, alpha) {

>   k <- length(n)

>   alpha1 <- 1

>   alpha2 <- 1

>   b <- 10000

>   z <- rep(1, b)

>

>   point <- prod(y) / prod(n)

>

>   for (j in 1:b) {

>     for (i in 1:k) {

>       if (y[i] == n[i]) z[j] <- z[j] * rbeta(1, alpha1 + y[i],

>           alpha2)

>       else z[j] <- z[j] * rbinom(1, n[i], y[i] / n[i]) / n[i]

>     }

>   }

>   z <- sort(z)

>   pl <- z[floor(alpha * b)]

>   c(point, pl)

> }

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leemis, L.M. (2017). Lower Confidence Bounds for System Reliability from Binary Failure Data Using Bootstrapping. In: Glen, A., Leemis, L. (eds) Computational Probability Applications. International Series in Operations Research & Management Science, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-319-43317-2_15

Download citation

Publish with us

Policies and ethics