Skip to main content

Counting Birds in Urban Areas: A Review of Methods for the Estimation of Abundance

  • Chapter
  • First Online:
Ecology and Conservation of Birds in Urban Environments

Abstract

Counts of birds can inform studies with different goals, such as estimating population size, monitoring populations over time and in response to environmental change, and estimating vital rates to model population dynamics. Because estimates need to be reasonably accurate and precise, considerable thought has gone into developing counting techniques that enable robust estimation of abundance, taking into account probability of detection, which can vary between species, land cover types and over time. In recent years these have been applied to over 60 % of studies estimating bird abundance conducted in non-urban landscapes. However, robust estimation techniques are not being similarly applied to studies in urban areas. We reviewed 162 articles in which birds had been counted and abundance and/or occupancy reported in urban areas, spanning the years 1991 to 2015, and found that only 11 % attempted to account for variable detectability; few of these had modelled detectability satisfactorily. There was no indication of increasing methodological rigour over time. Counting birds in urban areas poses significant challenges; robust techniques are constrained by limitations imposed by built structures, social factors and a mosaic of many small private parcels of land. We present a framework for estimating bird abundance and discuss the strengths and weaknesses of the different approaches, relating each to the urban context. Citizen science initiatives are considered as a good fit in urban areas and are increasing in number: sampling designed for all landscapes might be inappropriate in urban areas, but counting protocols should allow the modelling of detection probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alldredge MW, Simons TR, Pollock KH (2007) A field evaluation of distance measurement error in auditory avian point count surveys. J Wildl Manag 71(8):2759–2766

    Article  Google Scholar 

  • Alldredge MW, Pacifici K, Simons TR, Pollock KH (2008) A novel field evaluation of the effectiveness of distance and independent observer sampling to estimate aural avian detection probabilities. J Appl Ecol 45:1349–1356

    Article  Google Scholar 

  • Bibby CJ, Burgess ND, Hill DA (1992) Bird census techniques. Academic Press, London, 257 p

    Google Scholar 

  • Bird TJ, Bates AE, Lefcheck JS, Hill NA, Thompson RJ, Edgar GJ, Stuart-Smith RD, Wotherspoon S, Krkosek M, Stuart-Smith JF, Pecl GT, Barrett N, Frusher S (2013) Statistical solutions for error and bias in global citizen science datasets. Biol Conserv. doi:10.1016/j.biocon.2013.07.037

  • Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6(2):506–519

    Article  Google Scholar 

  • Blair RB (2004) The effects of urban sprawl on birds at multiple levels of biological organization. Ecol Soc 9(5):2, http://www.ecologyandsociety.org/vol9/iss5/art2

    Article  Google Scholar 

  • Blanco G, Frías O, Cuevas JA, González JL, Martínez F (2014) Commonness of not-so-common birds: the need for baseline knowledge of actual population size for the validation of population size predictions. Bird Study 61:351–360. doi:10.1080/00063657.2014.938018

    Article  Google Scholar 

  • Bonney R, Shirk JL, Phillips TB, Wiggins A, Ballard HL, Miller-Rushing AJ, Parrish JK (2014) Next steps for citizen science. Science 343 343:1436–1437. doi:10.1126/science.1251554

    Article  Google Scholar 

  • Borchers D (2012) A non-technical overview of spatially explicit capture-recapture models. J Ornithol 152(Suppl 2):S435–S444

    Article  Google Scholar 

  • Brosshard D, Lewenstein B, Bonney R (2005) Scientific knowledge and attitude change: the impact of a citizen science project. Int J Sci Educ 27:1099–1121

    Article  Google Scholar 

  • Buckland ST (2006) Point-transect surveys for songbirds: robust methodologies. Auk 123(2):345–357

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL (1993) Distance sampling: estimating abundance of biological populations. Chapman and Hall, London

    Book  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Oxford University Press, Oxford, 432 p

    Google Scholar 

  • Buckland ST, Marsden SJ, Green RE (2008) Estimating bird abundance: making methods work. Bird Conserv Int 18:S91–S108

    Article  Google Scholar 

  • Carrascal L, Palomino D (2008) Las aves communes reproductoras en España. Población en 2004–2006. SEO/BirdLife, Madrid. http://www.seo.org/media/docs/19mono.pdf

  • Catterall CP, Cousin JA, Piper S, Johnson G (2010) Long-term dynamics of bird diversity in forest and scrub: decay, turnover or homogenization? Divers Distrib 16:559–570

    Article  Google Scholar 

  • Clergeau P, Savard J-P, Mennechez G, Falardeau G (1998) Bird abundance and diversity along an urban-rural gradient: a comparative study between two cities on different continents. Condor 100(3):413–425

    Article  Google Scholar 

  • Daniels GD, Kirkpatrick JB (2006) Does variation in garden characteristics influence the conservation of birds in suburbia? Biol Conserv 133:326–335

    Article  Google Scholar 

  • Dawson DK, Efford MG (2009) Bird population density estimated from acoustic signals. J Appl Ecol 46:1201–1209

    Article  Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172

    Article  Google Scholar 

  • Donaldson MR, Henein KM, Runt ZMW (2007) Assessing the effect of developed habitat on waterbird behaviour in an urban riparian system in Ottawa, Canada. Urban Ecosyst 10:139–151

    Article  Google Scholar 

  • Donnelly R, Marzluff JM (2004) Importance of reserve size and landscape context to urban bird conservation. Conserv Biol 18(3):733–745

    Article  Google Scholar 

  • Efford MG (2004) Density estimation in live-trapping studies. Oikos 106:598–610

    Article  Google Scholar 

  • Evans KL, Gaston KJ, Sharp SP, McGowan A, Hatchwell BJ (2009) The effect of urbanization on avian morphology and latitudinal gradients in body size. Oikos 118:251–259

    Article  Google Scholar 

  • Evans J, Boudreau K, Hyman J (2010) Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116:588–595

    Google Scholar 

  • Fuller RA, Tratalos J, Gaston KJ (2009) How many birds are there in a city of half a million people? Divers Distrib 15:328–337

    Article  Google Scholar 

  • Gaston KJ, Warren PH, Thompson K, Smith RD (2005) Urban domestic gardens (IV): the extent of the resource and its associated features. Biodivers Conserv 14:3327–3349

    Article  Google Scholar 

  • Goddard MA, Ikin K, Lerman SB (2016) Ecological and social factors determining the diversity of birds in residential yards and gardens. In: Murgui E, Hedblom M (eds) Ecology and conservation of birds in urban environments. Springer, Heidelberg, pp 371–398

    Google Scholar 

  • Granholme SL (1983) Bias in density estimated due to movement of birds. Condor 85:243–248

    Article  Google Scholar 

  • Greenwood JJD (1996) Basic techniques. In: Sutherland WJ (ed) Ecological Census techniques. Cambridge University Press, Cambridge, 336 p

    Google Scholar 

  • Greenwood JJD (2007) Citizens, science and bird conservation. J Ornithol 148:S77–S124

    Article  Google Scholar 

  • Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol Conserv 116:195–203

    Article  Google Scholar 

  • Hanski I (2002) Metapopulations of animals in highly fragmented landscapes and population viability analysis. In: Beissinger SR, McCullough DR (eds) Population viability analysis. The University of Chicago Press, Chicago, pp 86–108, 577 p

    Google Scholar 

  • Hedblom M, Söderstrom B (2010) Landscape effects on birds in urban woodlands: an analysis of 34 Swedish cities. J Biogeogr 37:1302–1316

    Article  Google Scholar 

  • Herrando S, Weiserbs A, Quesada J, Ferrer X, Paquet J-Y (2012) Development of urban bird indicators using data from monitoring schemes in two large European cities. Anim Biodivers Conserv 35(1):141–150

    Google Scholar 

  • Herrando S, Brotons L, Anton M, Franch M, Quesada J, Ferrer X (2016) Indicators of the effects of the urban greening on birds: the case of Barcelona. In: Murgui E, Hedblom M (eds) Ecology and conservation of birds in urban environments. Springer, Heidelberg, pp 449–464

    Google Scholar 

  • Heyman E, Gunnarsson B, Dovydavicius L (2016) Management of urban nature and its impact on bird ecosystem services. In: Murgui E, Hedblom M (eds) Ecology and conservation of birds in urban environments. Springer, Heidelberg, pp 465–490

    Google Scholar 

  • Howe J (2006) The rise of crown sourcing. Wired, 14, 06

    Google Scholar 

  • Isaac NJB, van Strien AJ, August TA, de Zeeuw MP, Roy DB (2014) Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol Evol 5:1052–1060

    Article  Google Scholar 

  • Johnson DH (2008) In defense of indices; the case of bird surveys. J Wildl Manag 72(4):857–868

    Article  Google Scholar 

  • Kellner KF, Swihart RK (2014) Accounting for imperfect detection in ecology: a quantitative review. PLoS One 9(10):e111436. doi:10.1371/journal.pone.0111436

    Article  PubMed  PubMed Central  Google Scholar 

  • Keniger LE, Gaston KJ, Irvine KN, Fuller RA (2013) What are the benefits of interacting with nature? Int J Environ Res Public Health 10:913–935

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick JB, Daniels GD, Zagorski T (2007) Explaining variation in front gardens between suburbs of Hobart, Tasmania, Australia. Landsc Urban Plan 79:314–322

    Article  Google Scholar 

  • Kitchen K, Lill A, Price M (2010) Tolerance of human disturbance by urban-magpie larks. Aust Field Ornithol 27:1–9

    Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Addison-Wesley Educational Publishers, Menlo Park, CA, 620 p

    Google Scholar 

  • Lancia RA, Nichols JD, Pollock KH (1996) Estimating the number of animals in wildlife populations. In: Bookhout TA (ed) Research and management techniques for wildlife and habitats. The Wildlife Society, Bethesda, pp 215–253, 740 p

    Google Scholar 

  • Latta SC, Musher LJ, Latta KN, Katzner TE (2012) Influence of human population size and the built environment on avian assemblages in urban green spaces. Urban Ecosyst. doi:10.1007/s11252-012-0282-z

    Google Scholar 

  • Loss SR, Ruiz MO, Brawn JD (2009) Relationships between avian diversity, neighborhood age, income, and environmental characteristics of an urban landscape. Biol Conserv 142:2578–2585

    Article  Google Scholar 

  • Lovell R, Wheeler BW, Higgins SL, Irvine KN, Depledge MH (2014) A systematic review of the health and well-being benefits of biodiverse environments. J Toxicol Environ Health B 17:1–20

    Article  CAS  Google Scholar 

  • Lowry H, Lill A, Wong BBM (2012) Behavioural responses of wildlife to urban environments. Biol Rev. doi:10.1111/brv.12012

    PubMed  Google Scholar 

  • Luck GW, Smallbone LT, Sheffield KJ (2013) Environmental and socio-economic factors related to urban bird communities. Aust Ecol 38:111–120

    Article  Google Scholar 

  • Luniak M (2016) Urban ornithological atlases in Europe – a review. In: Murgui E, Hedblom M (eds) Ecology and conservation of birds in urban environments. Springer, Heidelberg, pp 209–226

    Google Scholar 

  • MacGregor-Fors I, Schondube JE (2011) Gray vs. green urbanization: relative importance of urban features for urban bird communities. Basic Appl Ecol 12:372–381

    Article  Google Scholar 

  • Macías-García C, Suárez-Rodríguez M, López-Rull I (2016) Becoming citizens: avian adaptations to urban life. In: Murgui E, Hedblom M (eds) Ecology and conservation of birds in urban environments. Springer, Heidelberg, pp 91–112

    Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic, San Diego, CA, 324 p

    Google Scholar 

  • Marques TA, Thomas L, Martin SW, Mellinger DK, Ward JA, Moretti DJ, Harris D, Tyack PL (2013) Estimating animal population density using passive acoustics. Biol Rev 88:287–309

    Article  PubMed  Google Scholar 

  • Marzluff JM (2001) Worldwide urbanization and its effects on birds. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Kluwer Academic, Boston, pp 19–47

    Chapter  Google Scholar 

  • Mason CF (2006) Avian species richness and numbers in the built environment: can new housing developments be good for birds? Biodivers Conserv 15:2365–2378

    Article  Google Scholar 

  • Matsuoka SM, Mahon CL, Handel CM, Sólymos P, Bayne EM, Fontaine PC, Ralph CJ (2014) Reviving common standards in point-count surveys for broad inference across studies. Condor 116:599–608

    Article  Google Scholar 

  • McCaffrey RE (2005) Using citizen science in urban bird studies. Urban Habitat 3(1). ISSN 1541-7115

    Google Scholar 

  • McDonnell MJ, Pickett STA (1990) Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71:1232–1237. doi:10.2307/1938259

    Article  Google Scholar 

  • McDonnell MJ, Breuste JH, Hahs AK (2009) Introduction: scope of the book and need for developing comparative approach to the ecological study of cities and towns, pp 1–5. In: McDonnell MJ, Hahs AK, Breuste JH (eds) Ecology and cities and towns: a comparative approach. Cambridge University Press, Cambridge, 714 p

    Google Scholar 

  • McKinney M (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • Meffert PJ (2016) Birds on urban wastelands. In: Murgui E, Hedblom M (eds) Ecology and conservation of birds in urban environments. Springer, Heidelberg, pp 399–412

    Google Scholar 

  • Menon M, Devi P, Rangaswamy MM (2014) Avifaunal richness and abundance along an urban rural gradient with emphasis on vegetative and anthropogenic attributes in Tiruchirappalli, India. Landsc Res. doi:10.1080/01426397.2014.910294

    Google Scholar 

  • Miranda AC (2016) Mechanisms of behavioural change in urban animals: the role of microevolution and phenotypic plasticity. In: Murgui E, Hedblom M (eds) Ecology and conservation of birds in urban environments. Springer, Heidelberg, pp 113–134

    Google Scholar 

  • Moilanen A (2002) Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96:516–530. doi:10.1034/j.1600-0706.2002.960313.x

    Article  Google Scholar 

  • Møller AP (2008) Flight distance of urban birds, predation, and selection for urban life. Behav Ecol Sociobiol 63:63–75

    Article  Google Scholar 

  • Møller AP (2010) Interspecific variation in fear responses predicts urbanization in birds. Behav Ecol. doi:10.1093/beheco/arp199

    Google Scholar 

  • Murgui Pérez E (2011) How many common breeding birds are there in Spain? A comparison of census methods and national population size estimates. Ardeola 58(2):343–364

    Article  Google Scholar 

  • Newson SE, Woodburn RJW, Noble DG, Baillie SR, Gregory RD (2005) Evaluating the Breeding Bird Survey for producing national population size and density estimates. Bird Study 52:42–54

    Article  Google Scholar 

  • Nichols JD (2014) The role of abundance estimates in conservation decision-making, pp 117–131. In: Verdade LM, Lyra-Jorge MC, Pina CI (eds) Applied ecology and human dimensions in biological conservation. Springer, Berlin, 228 p. doi:10.1007/978-3-642-54751-5_8

  • Nichols JD, Hines JE, Suer JR, Fallon FW, Fallon JE, Heglund PJ (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117:393–406

    Article  Google Scholar 

  • Norvell RE, Howe FP, Parrish JR (2003) A seven-year comparison of relative-abundance and distance-sampling methods. Auk 120(4):1013–1028

    Article  Google Scholar 

  • Pacifici K, Simons TR, Pollok KH (2008) Effects of vegetation and background noise on the detection process in auditory avian point-count surveys. Auk 125(3):600–607

    Article  Google Scholar 

  • Pennington DN, Blair RB (2012) Using gradient analysis to uncover pattern and process in urban bird communities. In: Lepczyk CA, Warren PS (eds) Urban bird ecology and conservation. Studies in avian biology No. 45. Cooper Ornithological Society, University of California Press, Berkeley, pp 9–30

    Google Scholar 

  • Pierce BL, Lopez RR, Silvy NJ (2012) Estimating animal abundance. In: Silvy NJ (ed) The wildlife techniques manual: Vol 1 research. The Johns Hopkins University Press, Baltimore, pp 284–318

    Google Scholar 

  • Potvin D, Mulder RA (2013) Immediate, independent adjustment of call pitch and amplitude in response to varying background noise by silvereyes. Behav Ecol 24:1363–1368

    Article  Google Scholar 

  • Potvin D, Mulder RA, Parris KM (2014) Silvereyes decrease acoustic frequency but increase efficacy of alarm calls in urban noise. Anim Behav 98:27–33

    Article  Google Scholar 

  • Ralph CJ, Greupel GR, Pyle P, Martin TE, De Sante DF (1993) Handbook of field methods for monitoring landbirds. USDA Forest Service Technical Report PSW-GTR-144

    Google Scholar 

  • Ralph CJ, Droege S, Sauer JR (1995) Managing and monitoring birds using point counts: standards and applications. In: Ralph CJ, Sauer JR, Droege S (eds) Monitoring bird populations by point counts. USDA Forest Service General technical Report PSW-GTR-149, pp 161–175

    Google Scholar 

  • Robertson MP, Cumming GS, Erasmus BFN (2010) Getting the most out of atlas data. Divers Distrib 16:363–375

    Article  Google Scholar 

  • Rodewald A (2012) Evaluating factors that influence avian community response to urbanization, pp 71–92. In: Lepczyk CA, Warren PS (eds) Urban bird ecology and conservation. Studies in Avian Biology No. 45. Cooper Ornithological Society, University of California Press, Berkeley, p 326

    Google Scholar 

  • Rosenstock SS, Anderson DR, Giesen KM, Leukering T, Carter MF (2002) Landbird counting techniques: current practice and an alternative. Auk 119:46–53

    Article  Google Scholar 

  • Royle JA, Nichols JD (2003) Estimating abundance from repeated presence–absence data or point counts. Ecology 84:777–790

    Article  Google Scholar 

  • Russell R, Guerry AD, Balvanera P, Gould RK, Basurto X, Chan KMA, Klain S, Levine J, Tam J (2013) Humans and nature: how knowing and experiencing nature affect well-being. Annu Rev Environ Resour 38:473–502

    Article  Google Scholar 

  • Sandström UG, Angelstam P, Mikusiński G (2006) Ecological diversity of birds in relation to the structure of urban green space. Landsc Urban Plan 77(1–2):39–53

    Article  Google Scholar 

  • Schmidt JH, McIntyre CL, MacCluskie MC (2013) Accounting for incomplete detection: What are we estimating and how might it affect long-term passerine monitoring programs. Biol Conserv 160:130–139

    Article  Google Scholar 

  • Scott JM, Ramsey FL (1981) Length of count period as a possible source of bias in estimating bird densities. Stud Avian Biol 6:409–413

    Google Scholar 

  • Shultz AJ, Tingley MW, Bowie RCK (2012) A century of avian community turnover in an urban green space in Northern California. Condor 114(2):258–267. doi:10.1525/cond.2012.110029

    Article  Google Scholar 

  • Stevenson BC, Borchers DL, Altwegg R, Swift RJ, Gillespie DM, Measey GJ (2014) A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol Evol. doi:10.1111/2014-210X.12291

    Google Scholar 

  • Thompson WL, White GC, Gowan C (1998) Monitoring vertebrate populations. Academic, San Diego, CA

    Google Scholar 

  • Tratalos J, Fuller RA, Evans KL, Davies RG, Newson SE, Greenwood JJD, Gaston KJ (2007) Bird densities are associated with household densities. Glob Chang Biol 13:1685–1695

    Article  Google Scholar 

  • Tulloch A, Possingham HP, Joseph LN, Szabo J, Martin TG (2013) Realising the full potential of citizen science monitoring programs. Biol Conserv 165:128–138

    Article  Google Scholar 

  • Turner WR (2003) Citywide biological monitoring as a tool for ecology and conservation in urban landscapes: the case of the Tuscon Bird Count. Landsc Urban Plan 65:149–166

    Article  Google Scholar 

  • van Heezik Y, Seddon PJ (2012) Accounting for detectability when estimating avian abundance in an urban area. N Z J Ecol 36(3):391–397

    Google Scholar 

  • van Heezik Y, Smyth A, Mathieu R (2008) Diversity of native and exotic birds across an urban gradient in a New Zealand city. Landsc Urban Plan 87:223–232

    Article  Google Scholar 

  • van Heezik Y, Freeman C, Porter S, Dickinson KJM (2013) Garden size, householder knowledge, and socio-economic status influence plant and bird diversity at the scale of individual gardens. Ecosystems 16:1442–1454. doi:10.1007/s10021-013-9694-8

  • Vargo TL, Boyle OD, Lepczyk CA, Mueller WP, Vondrachek SE (2012) The use of citizen volunteers in urban bird research, pp 113–124. In: Lepcyzk CA, Warren PS (eds) Urban bird ecology and conservation, Studies in Avian Biology No. 45. Cooper Ornithological Society, University of California Press, Berkeley, 326 p

    Google Scholar 

  • Vines A, Lill A (2014) Boldness and urban dwelling in little ravens. Wildlife Res. doi:10.1071/WR14104

    Google Scholar 

  • Warren PS, Lepczyk CA (2012) Beyond the gradient: insights from new work in the avian ecology of urbanizing lands, pp 1–6. In: Lepczyk CA, Warren PS (eds) Urban bird ecology and conservation. Studies in Avian Biology No. 45. Cooper Ornithological Society, University of California Press, Berkeley, 326 p

    Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2001) Analysis and management of animal populations. Academic, San Diego, 817 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda van Heezik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

van Heezik, Y., Seddon, P.J. (2017). Counting Birds in Urban Areas: A Review of Methods for the Estimation of Abundance. In: Murgui, E., Hedblom, M. (eds) Ecology and Conservation of Birds in Urban Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-43314-1_10

Download citation

Publish with us

Policies and ethics