Skip to main content

Accumulation of Micropollutants in Representative Biota of Sundarban Wetland

  • Chapter
  • First Online:
Marine Organic Micropollutants

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 355 Accesses

Abstract

The chapter highlights the comprehensive account of congener profiles of polycyclic aromatic hydrocarbons (PAHs) in intertidal bivalve mollusks (Meretrix meretrix, Macoma birmanica, and Sanguilonaria (Soletellina) acuminata) of Indian Sundarban mangrove wetland. The main aim of this work was to use the bivalves as bioindicators of the contamination of the 16 USEPA PAH. The PAH profile in bivalves is largely dominated by a petrogenic fingerprint, with over-imposition of pyrolytic PAH sources, as evidenced by diagnostic molecular ratios. Bioaccumulation factors (BAF) of individual compounds from the sediments were calculated, and it reveals overall higher values in the visceral mass of the bivalves. S acuminata showed significantly higher levels of PAHs, especially the high-molecular-weight (HMW) PAHs, compared to the other two species as a sensitive indicator of trace organic stress in future monitoring programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baojun T, Baozhong L, Hongsheng Y, Jianhai X (2005) Oxygen consumption and ammonia-N excretion of Meretrix meretrix in different temperature and salinity. Chinese J Oceanol Limnol 23(4):469–474

    Article  Google Scholar 

  • Bartolomé L, Cortazar E, Rapsos JC, Usobiaga A, Zuloaga O, Etxebarria N et al (2005) Simultaneous microwave-assisted extraction of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalate esters and nonylphenols in sediments. J Chromatogr A 1068:229–236

    Article  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P (1998) Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and two trophic level. Mar Pollut Bull 36:951–960

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P, Narbonne JF, Burgeot T, Michel X et al (1999) Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus sp) in different marine environments in relation with sediment PAH contamination and bioavailability: detection of a pollution gradient in Tolo Harbor; Hong Kong. Mar Environ Res 47:415–439

    Article  CAS  Google Scholar 

  • Benner BA, Gordon GE, Wise SA (1989) Mobile sources of atmospheric polycyclic aromatic hydrocarbons: a roadway tunnel study. Environ Sci Technol 23:1269–1278

    Article  CAS  Google Scholar 

  • Benner BA, Bryner NP, Wise SA, Mulholland GH, Lao RC, Fingas MF (1990) Polycyclic aromatic hydrocarbons emissions from combustion of crude oil on water. Environ Sci Technol 24:1418–1427

    Article  CAS  Google Scholar 

  • Besada V, Fumega J, Vaamonde A (2002) Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North-Atlantic coast 1991–1999. Sci Total Environ 288:239–253

    Article  CAS  Google Scholar 

  • Bhattacharya A (1993) Backwash-and-swash-oriented current crescents: indicators of beach slope, current direction and environment. Sediment Geol 84:139–148

    Article  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini M, Bhattacharya BD et al (2007) Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of Bay of Bengal (India). Mar Pollut Bull 54:1220–1229

    Article  CAS  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini M, Bhattacharya BD et al (2008) A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India). Chemosphere 73:1129–1137

    Article  CAS  Google Scholar 

  • Brix H, Lyngby SE (1985) The influence of size upon the concentration of Cd, Cr, Cu, Hg, Pb and Zn in the common mussel (Mytilus edulis L.). In: Salinski J (ed) Heavy metals in water organisms. Symposia Biologica Hungarica 29, Budapest

    Google Scholar 

  • Budzinski H, Jones I, Bellocq J, Pierard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    Article  CAS  Google Scholar 

  • Canuel EA, Martens CS (1993) Seasonal variability in the sources and alteration of organic matter associated with recently deposited sediments. Org Geochem 20(5):563–577

    Article  CAS  Google Scholar 

  • Chatterjee M, Silva-Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK et al (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356

    Article  CAS  Google Scholar 

  • Chatterjee M, Canario J, Sarkar SK, Brancho V, Bhattacharya AK, Saha S (2009) Mercury enrichments in core sediments in Sunderban mangroves, north-eastern part of Bay of Bengal and their ecotoxicological significance. Environ Geol 57:1125–1134

    Article  CAS  Google Scholar 

  • Claisse D, Joanny M, Quintin JY (1992) Le reseau national d’observation de la qualite du milieu marin (RNO). Analusis 20:M19–M22

    CAS  Google Scholar 

  • Cossa D (1989) A review of the Mytilus spp. as a quantitative indicator of cadmium and mercury contamination in coastal waters. Oceanol Acta 12:417–432

    CAS  Google Scholar 

  • Crals MG, Marty GD, Hose JE (2002) Synthesis of the toxicological impacts of the Exxon Valdez oil spill on Pacific herring (Clupea pallasi) in Prince William Sound; Alaska: USA. Can J Fish Aquat Sci 59:153–172

    Article  Google Scholar 

  • Dame RF (1996) Ecology of marine bivalves: an ecosystem approach. CRC, New York, p 254

    Book  Google Scholar 

  • Farrington JW, Goldberg ED, Risegrough RW, Martin JH, Bowen VT (1983) An overview of trace metal, DDE, PCB, hydrocarbon and artificial radionuclide data. Environ Sci Technol 17:490–496

    Article  CAS  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar, a study of the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  • Foster P, Chacko J (1995) Minor and trace elements in the Shell of Patella vulgata (L.). Mar Environ Res 40(1):55–76

    Article  CAS  Google Scholar 

  • Foster GD, Wright DA (1988) Unsubstituted polynuclear aromatic hydrocarbons in sediments, clams, and clam worms from Chesapeake Bay. Mar Pollut Bull 19:459

    Article  CAS  Google Scholar 

  • Fourie HO, Peisach M (1977) Loss of trace elements during dehydration of marine zoological material. Analyst (London) 102:193–200

    Article  CAS  Google Scholar 

  • Francioni E, Wagener A, Scofield A, Cavalier B (2005) Biomonitoring of polycyclic aromatic hydrocarbon in Perna perna from Guanabara Bay, Brazil. Environ Forensics 6:361–370

    Article  CAS  Google Scholar 

  • Francioni E, Ade Wagener L, Ade Scofield L, Depledge MH, Cavalier B, Sette CB et al (2007) Polycyclic aromatic hydrocarbons in inter-tidal mussel Perna perna: space-time observations, source investigation and genotoxicity. Sci Total Environ 372:515–531

    Article  CAS  Google Scholar 

  • Fung CN, Lam JCW, Zheng GJ, Connell DW, Monirith I, Tanabe S et al (2004) Mussel-based monitoring of trace metal and organic contaminants along the east coast of China using Perna viridis and Mytilus edulis. Environ Pollut 127:203–216

    Google Scholar 

  • Guinan J, Charlesworth M, Service M, Oliver T (2001) Sources and geochemical constraints of polycyclic aromatic hydrocarbons (PAHs) in sediments and mussels of two northern Irish Sea-Loughs. Mar Pollut Bull 42(11):1073–1081

    Article  CAS  Google Scholar 

  • Guzzella L, Vigano L, Sarkar SK, Saha M, Bhattacharya A (2005) Distribution of HCH., DDT, HCB and PAH in the sediments of coastal environments of West Bengal, northeast part of India. Environ Int 31:523–534

    Article  CAS  Google Scholar 

  • Hickey CW, Roper DS, Holland PT, Trower TM (1995) Accumulation of organic contaminants in two sediment-dwelling shellfish with contrasting feeding modes: deposit (Macoma liliana) and filter-feeding (Austrovenus strutchburyi). Arch Environ Contam Toxicol 29:221–231

    Article  CAS  Google Scholar 

  • Jacob J, Grimmer G, Hidelbrandt A (1997) Long term decline of atmospheric and marine pollution by polycyclic aromatic hydrocarbons (PAH) in Germany. Chemosphere 34:2099–2108

    Article  CAS  Google Scholar 

  • Kennish MJ (1997) Estuarine and marine pollution. CRC, Boca Raton, p 524

    Google Scholar 

  • Knezovich JP, Harrison FL, Wilhelm RG (1987) The bioavailability of sediment-sorbed organic chemicals: a review. Water Air Soil Pollut 32:233–245

    Article  CAS  Google Scholar 

  • Krumbein WC, Pettijohn FJ (1938) Manual of sediment petrology. Plenum, New York, p 549

    Google Scholar 

  • Lake JL, Rubinstein NI, Lee H, Lake CA, Heltshe JH, Pavignano S (1990) Equilibrium partitioning and bioaccumulation of sediment-associated contaminants by infaunal organisms. Environ Contam Toxicol 9:1095–1106

    Article  CAS  Google Scholar 

  • Law RJ, Kelly CA, Nicholson MD (1999) Polycyclic aromatic hydrocarbons (PAHs) in shellfish affected by the Sea Empress oil spill in Wales in 1996. Polycycl Aromatic Comp 17:229–239

    Article  CAS  Google Scholar 

  • Lehr RE, Jerima DM (1977) Metabolic activations of polycyclic hydrocarbons. Arch Environ Contam Toxicol 39:1–6

    Article  CAS  Google Scholar 

  • Liao JF (1990) The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. Acta Sci Nat Univ Sunyatseni 9(4): 67–72 (Suppl)

    Google Scholar 

  • Long ER, MacDonald DD, Smith SC, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19(1):81–97

    Article  Google Scholar 

  • McElory AE, Farrington JW, Teal JM (1989) Bioavailability of polycyclic aromatic hydrocarbons in aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC, Boca Raton, pp 1–40

    Google Scholar 

  • Moody IR, Lindstrom RM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267

    Article  CAS  Google Scholar 

  • Muel B, Saguem S (1985) Determination of 23 polycyclic aromatic hydrocarbons in atmospheric particulate matter of the Paris area and photolysis by the sunlight. Environ Sci Technol 19:111–131

    CAS  Google Scholar 

  • NAS (National Academy of Sciences) (1980) The International Mussel Watch. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Navarro P, Cortazar E, Bartolomé L, Deusto M, Raposo JC, Zuloaga O et al (2006) Comparison of solid phase extraction, saponification and gel permeation chromatography for the clean-up of microwave-assisted biological extracts in the análysis of polycylic aromatic hydrocarbons. J Chromatogr A 1128:10–16

    Article  CAS  Google Scholar 

  • Neff JM (1979) Polycyclic aromatic hydrocarbons in the aquatic environment. Sources, fates and biological effects. Applied Science Publishers, Barking, pp 1–262

    Google Scholar 

  • O’Connor TP (1996) Trends in chemical concentrations in mussels and oysters collected along the US coasts from 1986 to 1993. Mar Environ Res 41:183–200

    Article  Google Scholar 

  • Pereira WE, Domagalski JL, Hostetler FD, Brown LR, Rapp JB (1996) Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquim river and tributaries, California. Environ Toxicol Chem 15:172–180

    Article  CAS  Google Scholar 

  • Prahl FG, Carpenter R (1983) Polycyclic aromatic hydrocarbon (PAH)—phase associations in Washington coastal sediment. Geochim Cosmochim Acta 47:1013–1023

    Article  CAS  Google Scholar 

  • Pringle BH, Hissong DE, Katley EL, Mulawka ST (1968) Trace metal accumulation by estuarine mollusks. Am Soc Civil Eng 94:455–475

    CAS  Google Scholar 

  • Pruell RJ, Norwood CB, Bowen RD, Boothmas WS, Rogerson PF, Hacket M et al (1990) Geochemical study of sediment concentrations in new Bedford Harbor, Massachusetts. Mar Environ Res 29:77–101

    Article  CAS  Google Scholar 

  • Raoux CY, Garrigues P (1991) Mechanism model of polycyclic aromatic hydrocarbons contamination of marine coastal sediments from Mediterranean Sea. In: Garrigues P, Lamotte M (eds) Proceedings of the 13th international symposium on polynuclear aromatic hydrocarbons: Bordeaux, 1993, France 1–4th October. Gordon & Breach, Longhorn, pp 443–450

    Google Scholar 

  • Readman JW, Mantoura RFC, Rhead MM, Brown L (1982) Aquatic distribution and heterotrophic degradation of polycyclic aromatic hydrocarbons (PAH) in the Tamar Estuary. Estuar Coast Shelf Sci 14:369–386

    Article  CAS  Google Scholar 

  • Readman JW, Mantoura RFC, Rhead MM (1984) The physicochemical speciation of polycyclic aromatic hydrocarbons speciation in aquatic systems. Fresenius J Anal Chem 319:126–131

    Article  CAS  Google Scholar 

  • Rebello A, De I, Ponciano C, Melges IHF (1998) Avaliacao de produtividade primaria e da disponibilidade de nutrients na Baia de Guanabara. An Acad Bras Cienc 60:419–430

    Google Scholar 

  • Sarkar SK, Bhattacharya B, Debnath S, Bandopadhaya G, Sankar G (2002) Heavy metals in biota from Sundarban wetland ecosystem, eastern part of India: implications to monitoring and environmental assessment. Aquat Ecosyst Health Manage 5:215–222

    Google Scholar 

  • Sarkar SK, Franciscovic-Bilinski S, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hooghly River, northeast India and their environmental implications. Environ Int 30:1089–1098

    Article  Google Scholar 

  • Sarkar SK, Saha M, Bhattacharya B (2006) Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environ Int 32(2):203–207

    Article  Google Scholar 

  • Sarkar SK, Saha M, Takada H, Bhattacharya A, Mishra P, Bhattacharya B (2007) Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. J Cleaner Prod 15(16):1459–1467

    Article  Google Scholar 

  • Sarkar SK, Cabral H, Chatterjee M, Cardoso I, Bhattachrya A, Satpathy KK et al. (2008) Biomonitoring of heavy metals using the bivalve molluscs in Sunderban mangrove wetland, northeast coast of Bay of Bengal (India): possible risks to human health. CLEAN—soil, air and water pollution, vol 36(2). Wiley-VCH, Weinheim, pp 187–194

    Google Scholar 

  • Sicre MA, Marty JC, Saliot A, Aparicio X, Grimalt J, Albaiges J (1987) Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrences and origin. Atmos Environ 21:2247–2259

    Article  CAS  Google Scholar 

  • Someya M, Ohtake M, Kunisue T, Subramanian A, Takahashi S, Chakraborty P, Ramachandran R, Tanabe S (2010) Persistent organic pollutants in breast milk of mothers residing around an open dumping site in Kolkata, India: specifi c dioxin-like PCB levels and fish as a potential source. Environ Int 36:27–35

    Google Scholar 

  • Sporstøl S, Gjøs N, Lichtenthaler RG, Gustavsen KO, Urdal K, Oreld F (1983) Source identification of aromatic hydrocarbons in sediments using GC/MS. Environ Sci Technol 17:182–186

    Article  Google Scholar 

  • Subramaniam K, Solomon RDJ (2006) Organochlorine pesticides BHC and DDE in human blood in and around Madurai, India. Indian J Clin Biochem 21(2):169–172

    Google Scholar 

  • Tanabe S, Subramanian AN, Ramesh A, Kumaran PL, Miyazaki N, Tatsukawa R (1993) Persistent organochlorine residues in dolphins from the Bay of Bengal, south India. Mar Pollut Bull 26:311–316

    Google Scholar 

  • Varanasi U, Chan SL, MacLeod WD, Stein JE, Brown DW, Burrows DG et al (1989) Survey of the subsistence fish and shellfish for exposure to oil spilled from exxon valdez. First Year: Environmental Conservation Division; National Oceanic and Atmospheric Administration; Seattle; NOAA Technical Memorandum NMES F/NWC-191: 1990, 151 pp

    Google Scholar 

  • Venkatesan MI, Kaplan IR (1982) Distribution and transport of hydrocarbons in surface sediments of the Alaskan Outer Continental Shelf. Geochim Cosmochim Acta 46:2135–2149

    Article  CAS  Google Scholar 

  • Viarengo A (1989) Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. CRC Crit Rev Aquat Sci 1:295–317

    CAS  Google Scholar 

  • Walkey A, Black TA (1934) An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Sci 37:23–38

    Google Scholar 

  • Wallner-Kersanach M, Lobo SE, da Silva EM (1994) Depuration effects on trace metals in Anomalocardia brasiliana (Gmelin, 1791). Bull Environ Contam Toxicol 52:840–847

    Article  CAS  Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin I et al (1998) Study of the 25-year-old Npisi oil spill: persistence of oil residues and comparison between surface and subsurface sediments. Environ Sci Technol 32:2222–2232

    Article  CAS  Google Scholar 

  • Webster L, Russell M, Packer G, Moffat CF (2006) Long term monitoring of polycyclic aromatic hydrocarbons (PAHs) in blue mussels (Mytilus edulis) from a remote Scottish location. Polycycl Aromat Compd 26:283–298

    Article  CAS  Google Scholar 

  • Wei S, Lau RKF, Fung CN, Zheng GJ, Lam JCW, Connell DW et al (2006) Trace organic contamination in biota collected from the Pearl River Estuary, China: a preliminary risk assessment. Mar Pollut Bull 52:1682–1694

    Article  CAS  Google Scholar 

  • White KL (1986) An overview of immunotoxicology and polycyclic aromatic hydrocarbons. Environ Carcin Rev 2:163–202

    Article  Google Scholar 

  • Wise SA, Hilpert LR, Rebbert RE, Sander LC, Schantz MM, Chesler SN et al (1988) Standard reference materials for determination of polycyclic aromatic hydrocarbons. Fresenius’ Z Anal Chem 332:573–582

    Article  CAS  Google Scholar 

  • Wu Y, Zhang J, Zhu ZJ (1999) Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang estuary, north China. Mar Pollut Bull 46:619–625

    Article  Google Scholar 

  • Yan LS (1985) Study of carcinogenic mechanisms for aromatic hydrocarbons—extended bay region theory and its quantitative model. Carcinogenesis 6:1–6

    Article  CAS  Google Scholar 

  • Yang GP (2000) Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environ Pollut 108:163–179

    Article  CAS  Google Scholar 

  • Yang GP, Liu XL, Zhang JW (1998) Distribution of dibenzothiophene in the sediments of the South China Sea. Environ Pollut 101:405–414

    Article  CAS  Google Scholar 

  • Zanardi E, Bicego MC, Miranda LB, Weber RR (1999) Distribution and origin of hydrocarbons in water and sediments in Sao Sebastiao, SP, Brazil. Mar Pollut Bull 38:261–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarkar, S.K. (2016). Accumulation of Micropollutants in Representative Biota of Sundarban Wetland. In: Marine Organic Micropollutants. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-43301-1_5

Download citation

Publish with us

Policies and ethics