Skip to main content

Polycyclic Aromatic Hydrocarbons (PAHs) in Sediment Cores from Sundarban Wetland

  • Chapter
  • First Online:
Marine Organic Micropollutants

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 387 Accesses

Abstract

The distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) in core sediments (<63 lm particle size) of the Sundarban mangrove wetland, northeastern coast of Bay of Bengal (India), were investigated by gas chromatography coupled to mass spectrometry (GCMS). The total concentrations of 16 PAHs (∑16PAHs) ranged from 132 to 2938 ng g−1, with a mean of 634 ng g−1, and the sum of 10 out of 16 priority PAHs (∑10PAH) varied from 123 to 2441 ng g−1, with a mean of 555 ng g−1, and the five carcinogenic PAHs (benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene) accounted for 68–73 % of the priority PAHs. Maximum concentrations of the sediment core were obtained at subsoil depth of 12–16 cm. The prevalence of four to six aromatic ring PAHs and cross-plots of specific isomer ratios such as phenanthrene/anthracene, fluoranthene/pyrene, and methylphenanthrenes/phenanthrene suggested the predominance of wood and coal combustion sources, the atmospheric deposition, and surface runoff to be the major transport pathways. A good correlation existed between the benzo[a]pyrene level and the total PAH concentrations, making this compound a potential molecular marker for PAH pollution. Total TEQcarc S values calculated for samples varied from 6.95 ng g−1 TEQcarc S to 119 ng g−1 TEQcarc S, with an average of 59 ng g−1 dry weight TEQcarc S. The baseline data can be used for regular monitoring, considering the industrial and agricultural growth around this coastal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers PH (2003) Petroleum and individual polycyclic aromatic hydrocarbons. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of Ecotoxicology, 2nd edn. Lewis, Boca Raton, pp 341–371

    Google Scholar 

  • Basu N, Billiard S, Fragoso N, Omoike A, Tabash S, Brown S, Hodson P (2001) Ethoxyresorufin-O-deethylase induction in trout exposed to mixtures of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 20:1244–1251

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Michcon Q, Garrigues P, Burgeot T, Bellocq J (1998) Origin and bioavailability of PAHs in the Mediterranean sea from mussel and sediment records. Estuar Coast Shelf Sci 47:77–90

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P, Dizer H, Hansen PD (1999) Polycyclic aromatic hydrocarbons in recent sediment and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations. Mar Environ Res 47:17–47

    Article  CAS  Google Scholar 

  • Behrens A, Schirmer K, Bols NC, Segner H (2001) Polycyclic aromatic hydrocarbons as inducers of cytochrome P4501A enzyme activity in the rainbow trout liver cell line RTL-W1, and in primary cultures of rainbow trout hepatocytes. Environ Toxicol Chem 20:632–643

    Article  CAS  Google Scholar 

  • Bhattacharya A (2000) Sedimentary structure in the transitional zone between intertidal and supratidal flats of the mesotidal tropical coast of eastern India. In: Park YA, Davis RA Jr (eds) Tidalites, Proceedings of tidal sedimentation. The Korean Society of Oceanography, pp 47–54

    Google Scholar 

  • Bhattacharya A (2008) The morphodynamic setting in substrate behavior of Sunderban Mangrove wetland, India. ENVIS Newsl Wetland Ecosyst 4:2–9

    Google Scholar 

  • Bhattacharya A, Sarkar SK (2003) Over-exploitation of shellfishes in northeast coast of India. Ambio 32:70–75

    Google Scholar 

  • Bicego MC, Taniguchi S, Yogui GT, Montone RC, da Silva G, Lourenco RA, Martins CC, Sasaki ST, Pellizari VH, Weber RR (2006) Assessment of contamination by polychlorinated biphe-nyls and aliphatic and aromatic hydrocarbons in sediments of the Santos and Sao Vicente estuary system, Sao Paulo, Brazil. Mar Pollut Bull 52:1804–1816

    Article  CAS  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini M, Bhattacharya B, Bhattacharya A, Satpathy KK (2007) Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sunderban mangrove wetland, northeastern part of Bay of Bengal (India). Mar Pollut Bull 54:1220–1229

    Article  CAS  Google Scholar 

  • Blanchard M, Teil MJ, Carru AM, Ollivan D, Garban B, Chesterikoff A, Chevreuil M (1999) PCB and PAH impacts on cytochrome P-450-dependent oxidases in roach (Rutilus rutilus) from the Seine River (France). Arch Environ Contam Toxicol 37:242–250

    Article  CAS  Google Scholar 

  • Boonyatumanond R, Wattayakorn G, Togo A, Takada H (2006) Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Mar Pollut Bull 52:942–956

    Article  CAS  Google Scholar 

  • Brunstrom B, Broman D, Naf C (1991) Toxicity and EROD-inducing potency of 24 polycyclic aromatic hydrocarbons (PAHs) in chick embryos. Arch Toxicol 65:485–489

    Article  CAS  Google Scholar 

  • Budzinski H, Jones I, Bellock J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    Article  CAS  Google Scholar 

  • Burton GA Jr (2002) Sediment quality criteria in use around the world. Jpn Soc Limnol 3:65–75

    Article  CAS  Google Scholar 

  • Butler JD, Crossley F (1981) Reactivity of polycyclic aromatic hydrocarbons adsorbed on soot particles. Atmos Environ 15:91–94

    Article  CAS  Google Scholar 

  • Chatterjee M, Silva Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK, Prasad MVR, Chakraborty S, Bhattacharya BD (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356

    Article  CAS  Google Scholar 

  • Chatterjee M, Canario J, Sarkar SK, Brancho V, Bhattacharya A, Saha S (2009) Mercury enrichments in core sediments in Sunderban mangroves, northeastern part of Bay of Bengal and their ecotoxicological significance. Environ Geol 57:1125–1134

    Article  CAS  Google Scholar 

  • Clemons JH, Allan LM, Marvin CH, Wu Z, McCarry BE, Bryant DW, Zacharewski TR (1998) Evidence of estrogen- and TCDD-like activities in crude and fractionated extracts of PM10 air particulate material using in vitro gene expression assays. Environ Sci Technol 32:1853–1860

    Article  CAS  Google Scholar 

  • Colombo JC, Pelletier E, Brochu C, Khalil M, Cataggio JA (1989) Determination of hydrocarbon sources using n-alkanes and polyaromatic hydrocarbon distribution indices, case study: Rio de la Plata estuary, Argentina. Environ Sci Technol 23:888–894

    Article  CAS  Google Scholar 

  • Eisler R (2000) Handbook of chemical risk assessment, vol 2. Lewis, Boca Raton, pp 1343–1411

    Book  Google Scholar 

  • Eljarrat E, Caixach J, Rivera J, De Torres M, Ginebreda A (2001) Toxic potency assessment of non-and mono-ortho PCBs, PCDDs, PCDFs, and PAHs in northwest Mediterranean sediments (Catalonia, Spain). Environ Sci Technol 35:3589–3594

    Article  CAS  Google Scholar 

  • EPA US (1993) Provisional guidance for quantitative risk assessment of PAH.EPA/600/ R-93/089. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Garrigues P, Budzinski H, Manitz MP, Wise SA (1995) Pyrolytic and petrogenic inputs in recent sediments: a definitive signature through phenanthrene and chrysene compound distribution. Polycycl Arom Comp 7:275–284

    Article  CAS  Google Scholar 

  • Gerhart EH, Carlson RM (1978) Hepatic mixed function oxidase activity in rainbow trout exposed to several polycyclic aromatic compounds. Environ Res 17:284–295

    Article  CAS  Google Scholar 

  • Giuliani S, Sprovieri M, Frignani M, Cu NH, Mugnai C, Bellucci LG, Albertazzi S, Romano S, Feo ML, Marsella E, Nhon DH (2008) Presence and origin of polycyclic aromatic hydrocarbon in sediments of nine coastal lagoons in central Vietnam. Mar Pollut Bull 56:1504–1512

    Article  CAS  Google Scholar 

  • Guzzella L, Vigano L, Sarkar SK, Saha M, Bhattacharya A (2005) Distribution of HCH, DDT, HCB and PAH in the sediments of coastal environments of West Bengal, northeast part of India. Environ Int 31:523–534

    Article  CAS  Google Scholar 

  • Hwang HM, Wade TL, Sericano JL (2003) Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmos Environ 37:2259–2267

    Article  CAS  Google Scholar 

  • Jung DKJ, Klaus T, Fent K (2001) Cytochrome P450 induction by nitrated polycyclic aromatic hydrocarbons, azaarenes, and binary mixtures in fish hepatoma cell line PLHC-1. Environ Toxicol Chem 20:149–159

    Article  CAS  Google Scholar 

  • Kannan K, Johnson BR, Yohn SS, Giesy JP, Long DT (2005) Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from inland lakes in Michigan. Environ Sci Technol 39:4700–4706

    Article  CAS  Google Scholar 

  • Khim JS, Kannan K, Villeneuve DL, Koh CH, Giesy JP (1999) Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea: 1. Instrumental analysis. Environ Sci Technol 33:4199–4205

    Article  CAS  Google Scholar 

  • Kwokal Z, Sarkar SK, Chatterjee M, Franciskovis-Bilinski S, Bilinski H, Bhattacharya A, Bhattacharya BD, Alam MA (2008) An assessment of mercury loading in core sediments of Sunderban mangrove wetland, India (a preliminary report). Bull Environ Contam Toxicol 81:105–112

    Article  CAS  Google Scholar 

  • Lehr RE, Jerina DM (1977) Metabolic activations of polycyclic hydrocarbons: structure-activity relationships. Arch Toxicol 39:1–6

    Article  CAS  Google Scholar 

  • Liao JF (1990) The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. Sci Nat Univ Sunyatseni 9(4 Suppl):67–72

    Google Scholar 

  • Long ER, MacDonald DD, Smith SC, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19(1):81–97

    Article  Google Scholar 

  • Ma M, Feng Z, Guan C, Ma Y, Xu H, Li H (2001) DDT, PAH and PCB in sediments from the Bohai Sea and the Yellow Sea. Mar Pollut Bull 42:132–136

    Google Scholar 

  • Mai BX, Fu JM, Sheng GY, Kang YH, Lin Z, Zhang G, Min YS, Zeng EY (2002) Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ Pollut 117:457–474

    Article  CAS  Google Scholar 

  • Macías-Zanmora JV, Mendoza-Vega E, Villaescusa-Celaya JA (2002) PAHs composition of surface marine sediments: a comparison to potential local sources in Todos Santos Bay, BC, Mexico. Chemosphere 46:459–468

    Google Scholar 

  • McCready S, Slee GF, Birch GF, Taylor SE (2000) The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbor, Australia. Mar Pollut Bull 40:999–1006

    Article  CAS  Google Scholar 

  • McElory AE, Farrington JW, Teal JM (1989) Bioavailability of polycyclic aromatic hydrocarbons in aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC, Boca Raton, pp 1–40

    Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soils and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11

    Article  CAS  Google Scholar 

  • Nakata H, Sakai Y, Miyawaki T, Takemura A (2003) Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan. Environ Sci Technol 37:3513–3521

    Article  CAS  Google Scholar 

  • Neff JM (1979) In polycyclic aromatic hydrocarbons in the aquatic environment. Sources, fates and biological effects. Applied Science, Barking

    Google Scholar 

  • Pait AS, Whitall DR, Jeffrey CFG, Caldow C, Mason AL, Lauenstein GG, Christensen JD (2008) Chemical contamination in south-west Puerto Rico: an assessment of organic contaminants in nearshore sediments. Mar Pollut Bull 56:580–606

    Article  CAS  Google Scholar 

  • Payne JF, Mathieu A, Collier TK (2003) Ecotoxicological studies focusing on marine and freshwater fish. In: Douben PET (ed) PAHs: an ecotoxicological perspective. Wiley, Chichester, pp 191–224

    Chapter  Google Scholar 

  • Peters CA, Knightes CD, Brown DG (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33:4499–4507

    Article  CAS  Google Scholar 

  • Qiao M, Wang C, Huang S, Wang D, Wang Z (2005) Composition, sources and toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33

    Article  Google Scholar 

  • Rylander C, Sandanger TM, Brustad M (2009) Association between marine food consumption and plasma concentrations of POPs in a Norwegian coastal population. J Environ Monit 11:370–376

    Article  CAS  Google Scholar 

  • Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, Chiem NH, Tuyen BC, Prudente M, Boonyatumanond R, Sarkar SK, Bhattacharya B, Mishra P, Tana TS (2009) Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar Pollut Bull 58:189–200

    Article  CAS  Google Scholar 

  • Savinov VM, Savinova TN, Matishov GG, Dahle S, Naes K (2003) Polycyclic aromatic hydrocarbons (PAHs) and organochlorine (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Sci Total Environ 306:39–56

    Google Scholar 

  • Sarkar SK, Bhattacharya B, Debnath S, Bandopadhaya G, Giri S (2002) Heavy metals in biota from Sundarban wetland ecosystem, eastern part of India implications to monitoring and environmental assessment. Aquat Ecosyst Health Manage 5:215–222

    Article  Google Scholar 

  • Sarkar SK, Bilinski SF, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environ Int 30:1089–1098

    Article  Google Scholar 

  • Sarkar SK, Saha M, Takada H, Bhattacharya A, Mishra P, Bhattacharya B (2007) Water quality management in the lower stretch of the River Ganges, east coast of India: an approach through environmental education. J Clean Prod 15:65–73

    Article  Google Scholar 

  • Sicre MA, Marty JC, Saliot A, Aparicio X, Grimalt J, Albaiges J (1987) Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmos Environ 21:2247–2259

    Article  CAS  Google Scholar 

  • Tolosa I, Bayona JM, Albaigés J (1996) Aliphatic and polycyclic aromatic hydrocabons and sulfur/oxygen derivatives in north-western Mediterranean sediments: spatial and temporal variability, fluxes and budgets. Environ Sci Technol 30:2495–2503

    Article  CAS  Google Scholar 

  • Tolun LG, Okay OS, Gaines AF, Tolay M, Tufekci H, Kirati N (2001) The pollution status and the toxicity of surface sediments in Yzmit Bay (Marmara Sea), Turkey. Environ Int 26:163–168

    Article  CAS  Google Scholar 

  • Vane CH, Harrison I, Kim AW, Moss-Hayes V, Vickers BP, Hong K (2009) Organic and metal contamination in surface mangrove sediments of South China. Mar Pollut Bull 58:134–144

    Article  CAS  Google Scholar 

  • Villeneuve DL, Khim JS, Kannan K, Giesy JP (2002) Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxin-like and estrogenic responses in three cell lines. Environ Toxicol 17:128–137

    Article  CAS  Google Scholar 

  • White KL (1986) An overview of immunotoxicology and polycyclic aromatic hydrocarbons. Environ Carcinogen Rev 2:163–202

    Article  Google Scholar 

  • Willet KL, Gardinali PR, Sericano JL, Wade TL, Safe SH (1997) Characterization of the H4IIE rat hepatoma cell bioassay for evaluation of environmental samples containing polynuclear aromatic hydrocarbons (PAHs). Arch Environ Contam Toxicol 32:442–448

    Article  Google Scholar 

  • Wu Y, Zhang J, Zhu Z (2003) Polycyclic aromatic hydrocarbons in the sediments of the Yaluhiang Estuary, North China. Mar Pollut Bull 463:619–625

    Google Scholar 

  • Yamashita N, Kannan K, Imagawa T, Villeneuve DL, Hashimoto S, Miyazaki A, Giesy JP (2000) Vertical profile of polychlorinated-dibenzo-p-dioxins, -dibenzofurans, -naphthalenes, -biphenyls, polycyclic aromatic hydrocarbons and alkylphenols in a sediment core from Tokyo Bay, Japan. Environ Sci Technol 34:3560–3567

    Article  CAS  Google Scholar 

  • Yan LS (1985) Study of carcinogenic mechanisms for aromatic hydrocarbons: extended bay region theory and its quantitative model. Carcinogenesis 6:1–6

    Article  CAS  Google Scholar 

  • Yang GP (2000) Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environ Pollut 108:163–171

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhan ZL, Hong HS, Zhou JL, Yu G (2004) Phase association of polycyclic aromatic hydrocarbons in the Minjang River Estuary, China. Sci Total Environ 323:71–86

    Google Scholar 

  • Zuloaga O, Prieto A, Usobiaga A, Sarkar SK, Chatterjee M, Bhattacharya BD, Satpathy KK, Alam MA (2009) Polycyclic aromatic hydrocarbons in intertidal marine bivalves of Sunderban mangrove wetland, India: an approach to bioindicator species. Water Air Soil Pollut 201:305–318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarkar, S.K. (2016). Polycyclic Aromatic Hydrocarbons (PAHs) in Sediment Cores from Sundarban Wetland. In: Marine Organic Micropollutants. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-43301-1_4

Download citation

Publish with us

Policies and ethics