Advertisement

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure

  • Alberto BattistelloEmail author
  • Christophe Giraud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9689)

Abstract

Over the years, fault injection has become one of the most dangerous threats for embedded devices such as smartcards. It is thus mandatory for any embedded system to implement efficient protections against this hazard. Among the various countermeasures suggested so far, the idea of infective computation seems fascinating, probably due to its aggressive strategy. Originally conceived to protect asymmetric cryptosystems, infective computation has been recently adapted to symmetric systems. This paper investigates the security of a new symmetric infective countermeasure suggested at CHES 2014. By noticing that the number of executed rounds is not protected, we develop four different attacks that exploit the infection algorithm to disturb the round counter and related variables. Our attacks allow one to efficiently recover the secret key of the underlying cryptosystem by using any of the three most popular fault models used in literature.

Keywords

Fault attack Infective countermeasure AES 

References

  1. 1.
    Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.-H.: Breaking public key cryptosystems and tamper resistance devices in the presence of transient fault. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Battistello, A., Giraud, C.: Fault analysis of infective AES computations. In: Fischer, W., Schmidt, J.-M. (eds.) FDTC, pp. 101–107. IEEE (2013)Google Scholar
  3. 3.
    Berzati, A., Canovas, C., Goubin, L.: (In)security against fault injection attacks for CRT-RSA implementations. In: Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.-P. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC, pp. 101–107. IEEE Computer Society (2008)Google Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Choukri, H., Tunstall, M.: Round reduction using faults. In: Breveglieri, L., Koren, I. (eds.) Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC (2005)Google Scholar
  7. 7.
    Dutertre, J.-M., Mirbaha, A.-P., Naccache, D., Ribotta, A.-L., Tria, A., Vaschalde, T.: Fault round modification analysis of the advanced encryption standard. In: IEEE International Symposium on Hardware-Oriented Security and Trust - HOST, pp. 28–39. IEEE (2012)Google Scholar
  8. 8.
    Feix, B., Venelli, A.: Defeating with fault injection a combined attack resistant exponentiation. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 32–45. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards and Technology, November 2001Google Scholar
  10. 10.
    Gierlichs, B., Schmidt, J.M., Tunstall, M.: Infective computation and dummy rounds: fault protection for block ciphers without check-before-output. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 305–321. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack countermeasures - application to AES. In: Bertoni, G., Gierlichs, B. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC, pp. 85–94. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Mukhopadhyay, D.: An improved fault based attack of the advanced encryption standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–434. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault Tolerant Infective Countermeasure for AES. Cryptology ePrint Archive, Report 2015/493 (2015). http://eprint.iacr.org/ Google Scholar
  15. 15.
    Piret, G., Quisquater, J.J.: A differential fault attack technique against SPN structures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with randomization. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 93–111. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Wagner, D.: Cryptanalysis of a provable secure CRT-RSA algorithm. In: Pfitzmann, B., Liu, P. (eds.) ACM Conference on Computer and Communications Security - CCS 2004, pp. 82–91. ACM Press (2004)Google Scholar
  18. 18.
    Yen, S.M., Kim, D., Moon, S.J.: Cryptanalysis of two protocols for RSA with CRT based on fault infection. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 53–61. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: RSA speedup with residue number system immune against hardware fault cryptanalysis. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Cryptography and Security GroupOberthur TechnologiesPessacFrance
  2. 2.Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-SaclayVersaillesFrance

Personalised recommendations