Skip to main content

Visceral Sensitivity

  • Chapter
  • First Online:
Pediatric Neurogastroenterology

Abstract

The GI tract has a rich afferent innervation that can detect mechanical, chemical, and thermal stimuli. Sensory information reaching the cortex can give rise to conscious sensations, painful or not. Abnormal heightened visceral sensitivity may lead to functional gastrointestinal disorders, and visceral hypersensitivity is considered a crucial pathophysiological factor. This chapter covers the description of the sensory innervation of the GI tract and the pathways followed in the central nervous system. The physiology of visceral sensitivity and the mechanisms leading to visceral hypersensitivity in children are also described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drossman DA, Camilleri M, Mayer EA, Whitehead WE. AGA technical review on irritable bowel syndrome. Gastroenterology. 2002;123(6):2108–31.

    Article  PubMed  Google Scholar 

  2. Aziz Q, Thompson DG. Brain-gut axis in health and disease. Gastroenterology. 1998;114(3):559–78.

    Article  CAS  PubMed  Google Scholar 

  3. Ray BS, Neill CL. Abdominal visceral sensation in man. Ann Surg. 1947;126:709–24.

    Article  PubMed Central  Google Scholar 

  4. Bielefeldt K, Christianson JA, Davis BM. Basic and clinical aspects of visceral sensation: transmission in the CNS. Neurogastroenterol Motil. 2005;17(4):488–99.

    Article  CAS  PubMed  Google Scholar 

  5. Berthoud HR, Blackshaw LA, Brookes SJ, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil. 2004;16 Suppl 1:28–33.

    Article  PubMed  Google Scholar 

  6. Brierley SM. Molecular basis of mechanosensitivity. Auton Neurosci. 2010;153(1–2):58–68.

    Article  CAS  PubMed  Google Scholar 

  7. Blackshaw LA, Brookes SJ, Grundy D, Schemann M. Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil. 2007;19(1 Suppl):1–19.

    Article  CAS  PubMed  Google Scholar 

  8. Mazet B. Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch. 2015;467(1):191–200.

    Article  CAS  PubMed  Google Scholar 

  9. Raybould HE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 2010;153(1–2):41–6.

    Article  CAS  PubMed  Google Scholar 

  10. Braun T, Voland P, Kunz L, Prinz C, Gratzl M. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology. 2007;132(5):1890–901.

    Article  CAS  PubMed  Google Scholar 

  11. Bertrand PP, Kunze WA, Bornstein JC, Furness JB, Smith ML. Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am J Physiol. 1997;273(2 Pt 1):G422–35.

    CAS  PubMed  Google Scholar 

  12. Camilleri M. Peripheral mechanisms in irritable bowel syndrome. N Engl J Med. 2012;367(17):1626–35.

    Article  CAS  PubMed  Google Scholar 

  13. Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283(2):248–68.

    Article  CAS  PubMed  Google Scholar 

  14. Van Oudenhove L, Demyttenaere K, Tack J, Aziz Q. Central nervous system involvement in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol. 2004;18(4):663–80.

    Article  PubMed  CAS  Google Scholar 

  15. Palecek J. The role of dorsal columns pathway in visceral pain. Physiol Res. 2004;53 Suppl 1:S125–30.

    PubMed  Google Scholar 

  16. Mayer EA, Gupta A, Kilpatrick LA, Hong JY. Imaging brain mechanisms in chronic visceral pain. Pain. 2015;156 Suppl 1:S50–63.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tillisch K, Mayer EA, Labus JS. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology. 2011;140(1):91–100.

    Article  PubMed  Google Scholar 

  18. Rosenberger C, Thurling M, Forsting M, Elsenbruch S, Timmann D, Gizewski ER. Contributions of the cerebellum to disturbed central processing of visceral stimuli in irritable bowel syndrome. Cerebellum. 2013;12(2):194–8.

    Article  PubMed  Google Scholar 

  19. Faure C, Wieckowska A. Somatic referral of visceral sensations and rectal sensory threshold for pain in children with functional gastrointestinal disorders. J Pediatr. 2007;150(1):66–71.

    Article  PubMed  Google Scholar 

  20. Van Ginkel R, Voskuijl WP, Benninga MA, Taminiau JA, Boeckxstaens GE. Alterations in rectal sensitivity and motility in childhood irritable bowel syndrome. Gastroenterology. 2001;120(1):31–8.

    Article  PubMed  Google Scholar 

  21. Iovino P, Tremolaterra F, Boccia G, Miele E, Ruju FM, Staiano A. Irritable bowel syndrome in childhood: visceral hypersensitivity and psychosocial aspects. Neurogastroenterol Motil. 2009;21(9):940–e74.

    Article  CAS  PubMed  Google Scholar 

  22. Di Lorenzo C, Youssef NN, Sigurdsson L, Scharff L, Griffiths J, Wald A. Visceral hyperalgesia in children with functional abdominal pain. J Pediatr. 2001;139(6):838–43.

    Article  PubMed  Google Scholar 

  23. Halac U, Noble A, Faure C. Rectal sensory threshold for pain is a diagnostic marker of irritable bowel syndrome and functional abdominal pain in children. J Pediatr. 2010;156(1):60–5. e1.

    Article  PubMed  Google Scholar 

  24. Camilleri M, McKinzie S, Busciglio I, Low PA, Sweetser S, Burton D, et al. Prospective study of motor, sensory, psychologic, and autonomic functions in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2008;6(7):772–81.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mertz H, Naliboff B, Munakata J, Niazi N, Mayer E. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology. 1995;109(1):40–52.

    Article  CAS  PubMed  Google Scholar 

  26. Whitehead WE, Holtkotter B, Enck P, Hoelzl R, Holmes KD, Anthony J, et al. Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology. 1990;98(5 Pt 1):1187–92.

    Article  CAS  PubMed  Google Scholar 

  27. Bouin M, Plourde V, Boivin M, Riberdy M, Lupien F, Laganiere M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology. 2002;122(7):1771–7.

    Article  PubMed  Google Scholar 

  28. Schmulson M, Chang L, Naliboff B, Lee OY, Mayer EA. Correlation of symptom criteria with perception thresholds during rectosigmoid distension in irritable bowel syndrome patients. Am J Gastroenterol. 2000;95(1):152–6.

    Article  CAS  PubMed  Google Scholar 

  29. Bradette M, Delvaux M, Staumont G, Fioramonti J, Bueno L, Frexinos J. Evaluation of colonic sensory thresholds in IBS patients using a barostat. Definition of optimal conditions and comparison with healthy subjects. Dig Dis Sci. 1994;39(3):449–57.

    Article  CAS  PubMed  Google Scholar 

  30. Bouin M, Meunier P, Riberdy-Poitras M, Poitras P. Pain hypersensitivity in patients with functional gastrointestinal disorders: a gastrointestinal-specific defect or a general systemic condition? Dig Dis Sci. 2001;46(11):2542–8.

    Article  CAS  PubMed  Google Scholar 

  31. Naliboff BD, Munakata J, Fullerton S, Gracely RH, Kodner A, Harraf F, et al. Evidence for two distinct perceptual alterations in irritable bowel syndrome. Gut. 1997;41(4):505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spetalen S, Jacobsen MB, Vatn MH, Blomhoff S, Sandvik L. Visceral sensitivity in irritable bowel syndrome and healthy volunteers: reproducibility of the rectal barostat. Dig Dis Sci. 2004;49(7–8):1259–64.

    Article  PubMed  Google Scholar 

  33. Coffin B, Azpiroz F, Guarner F, Malagelada JR. Selective gastric hypersensitivity and reflex hyporeactivity in functional dyspepsia. Gastroenterology. 1994;107(5):1345–51.

    Article  CAS  PubMed  Google Scholar 

  34. Tack J, Caenepeel P, Fischler B, Piessevaux H, Janssens J. Symptoms associated with hypersensitivity to gastric distention in functional dyspepsia. Gastroenterology. 2001;121(3):526–35.

    Article  CAS  PubMed  Google Scholar 

  35. Tack J, Caenepeel P, Corsetti M, Janssens J. Role of tension receptors in dyspeptic patients with hypersensitivity to gastric distention. Gastroenterology. 2004;127(4):1058–66.

    Article  PubMed  Google Scholar 

  36. Mertz H, Fullerton S, Naliboff B, Mayer EA. Symptoms and visceral perception in severe functional and organic dyspepsia. Gut. 1998;42(6):814–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bouin M, Lupien F, Riberdy M, Boivin M, Plourde V, Poitras P. Intolerance to visceral distension in functional dyspepsia or irritable bowel syndrome: an organ specific defect or a pan intestinal dysregulation? Neurogastroenterol Motil. 2004;16(3):311–4.

    Article  CAS  PubMed  Google Scholar 

  38. Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology. 2002;122(7):2032–48.

    Article  PubMed  Google Scholar 

  39. Mayer EA, Bradesi S, Chang L, Spiegel BM, Bueller JA, Naliboff BD. Functional GI disorders: from animal models to drug development. Gut. 2008;57(3):384–404.

    Article  CAS  PubMed  Google Scholar 

  40. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology. 2009;136(6):1979–88.

    Article  PubMed  Google Scholar 

  41. Pensabene L, Talarico V, Concolino D, Ciliberto D, Campanozzi A, Gentile T, et al. Postinfectious functional gastrointestinal disorders in children: a multicenter prospective study. J Pediatr. 2015;166(4):903–7. e1.

    Article  PubMed  Google Scholar 

  42. Tornblom H, Lindberg G, Nyberg B, Veress B. Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology. 2002;123(6):1972–9.

    Article  PubMed  Google Scholar 

  43. Chadwick VS, Chen W, Shu D, Paulus B, Bethwaite P, Tie A, et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology. 2002;122(7):1778–83.

    Article  PubMed  Google Scholar 

  44. Shulman RJ, Eakin MN, Czyzewski DI, Jarrett M, Ou CN. Increased gastrointestinal permeability and gut inflammation in children with functional abdominal pain and irritable bowel syndrome. J Pediatr. 2008;153(5):646–50.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liebregts T, Adam B, Bredack C, Roth A, Heinzel S, Lester S, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology. 2007;132(3):913–20.

    Article  CAS  PubMed  Google Scholar 

  46. Camilleri M, Lasch K, Zhou W. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2012;303(7):G775–85.

    Article  CAS  PubMed  Google Scholar 

  47. Wilcz-Villega E, McClean S, O’Sullivan M. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS. Neurogastroenterol Motil. 2014;26(3):316–25.

    Article  CAS  PubMed  Google Scholar 

  48. Martinez C, Lobo B, Pigrau M, Ramos L, Gonzalez-Castro AM, Alonso C, et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut. 2013;62(8):1160–8.

    Article  CAS  PubMed  Google Scholar 

  49. Gue M, Del Rio-Lacheze C, Eutamene H, Theodorou V, Fioramonti J, Bueno L. Stress-induced visceral hypersensitivity to rectal distension in rats: role of CRF and mast cells. Neurogastroenterol Motil. 1997;9(4):271–9.

    Article  CAS  PubMed  Google Scholar 

  50. Eutamene H, Theodorou V, Fioramonti J, Bueno L. Acute stress modulates the histamine content of mast cells in the gastrointestinal tract through interleukin-1 and corticotropin-releasing factor release in rats. J Physiol. 2003;553(Pt 3):959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126(3):693–702.

    Article  PubMed  Google Scholar 

  52. Klooker TK, Braak B, Koopman KE, Welting O, Wouters MM, van der Heide S, et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut. 2010;59(9):1213–21.

    Article  CAS  PubMed  Google Scholar 

  53. Di Nardo G, Barbara G, Cucchiara S, Cremon C, Shulman RJ, Isoldi S, et al. Neuroimmune interactions at different intestinal sites are related to abdominal pain symptoms in children with IBS. Neurogastroenterol Motil. 2014;26(2):196–204.

    Article  PubMed  Google Scholar 

  54. Willot S, Gauthier C, Patey N, Faure C. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(8):734–9. e347.

    Article  CAS  PubMed  Google Scholar 

  55. Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut. 2016;65(1):155–68.

    Article  CAS  PubMed  Google Scholar 

  56. Tache Y, Million M. Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia. J Neurogastroenterol Motil. 2015;21(1):8–24.

    Article  PubMed  PubMed Central  Google Scholar 

  57. van den Wijngaard RM, Klooker TK, Welting O, Stanisor OI, Wouters MM, van der Coelen D, et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil. 2009;21(10):1107–e94.

    Article  PubMed  CAS  Google Scholar 

  58. Barreau F, Salvador-Cartier C, Houdeau E, Bueno L, Fioramonti J. Long-term alterations of colonic nerve-mast cell interactions induced by neonatal maternal deprivation in rats. Gut. 2008;57(5):582–90.

    Article  CAS  PubMed  Google Scholar 

  59. Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology. 2007;132(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  60. Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, Andrade-Gordon P, et al. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest. 2007;117(3):636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dothel G, Barbaro MR, Boudin H, Vasina V, Cremon C, Gargano L, et al. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2015;148(5):1002–11. e4.

    Article  CAS  PubMed  Google Scholar 

  62. Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132(4):1344–58.

    Article  CAS  PubMed  Google Scholar 

  63. Sharkey KA. Emerging roles for enteric glia in gastrointestinal disorders. J Clin Invest. 2015;125(3):918–25.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol. 2014;592(14):2959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fujikawa Y, Tominaga K, Tanaka F, Tanigawa T, Watanabe T, Fujiwara Y, et al. Enteric glial cells are associated with stress-induced colonic hyper-contraction in maternally separated rats. Neurogastroenterol Motil. 2015;27(7):1010–23.

    Article  CAS  PubMed  Google Scholar 

  66. Gershon MD. Review article: roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther. 1999;13 Suppl 2:15–30.

    PubMed  Google Scholar 

  67. Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 2005;39(5 Suppl 3):S184–93.

    Article  PubMed  Google Scholar 

  68. Tack J, Sarnelli G. Serotonergic modulation of visceral sensation: upper gastrointestinal tract. Gut. 2002;51(90001):77–80. doi:10.1136/gut.51.suppl_1.i77.

    Article  Google Scholar 

  69. Camilleri M. Serotonergic modulation of visceral sensation: lower gut. Gut. 2002;51(90001):81i–6. doi:10.1136/gut.51.suppl_1.i81.

    Article  Google Scholar 

  70. Mawe GM, Coates MD, Moses PL. Review article: intestinal serotonin signalling in irritable bowel syndrome. Aliment Pharmacol Ther. 2006;23(8):1067–76.

    Article  CAS  PubMed  Google Scholar 

  71. Vermeulen W, De Man JG, Pelckmans PA, De Winter BY. Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol. 2014;20(4):1005–20.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Reigstad CS, Salmonson CE, Rainey 3rd JF, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395–403.

    Article  CAS  PubMed  Google Scholar 

  73. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen JX, Pan H, Rothman TP, Wade PR, Gershon MD. Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. Am J Physiol. 1998;275(3 Pt 1):G433–48.

    CAS  PubMed  Google Scholar 

  75. Chen JJ, Li Z, Pan H, Murphy DL, Tamir H, Koepsell H, et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J Neurosci. 2001;21(16):6348–61.

    CAS  PubMed  Google Scholar 

  76. Wade PR, Chen J, Jaffe B, Kassem IS, Blakely RD, Gershon MD. Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci. 1996;16(7):2352–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fukudo S, Kanazawa M, Mizuno T, Hamaguchi T, Kano M, Watanabe S, et al. Impact of serotonin transporter gene polymorphism on brain activation by colorectal distention. Neuroimage. 2009;47(3):946–51.

    Article  CAS  PubMed  Google Scholar 

  78. Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H, et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology. 2004;126(7):1657–64.

    Article  CAS  PubMed  Google Scholar 

  79. Faure C, Patey N, Gauthier C, Brooks EM, Mawe GM. Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients. Gastroenterology. 2010;139(1):249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Park JH, Rhee PL, Kim G, Lee JH, Kim YH, Kim JJ, et al. Enteroendocrine cell counts correlate with visceral hypersensitivity in patients with diarrhoea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2006;18(7):539–46.

    Article  CAS  PubMed  Google Scholar 

  81. Kawabata A, Matsunami M, Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol. 2008;153 Suppl 1:S230–40.

    CAS  PubMed  Google Scholar 

  82. Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med. 2000;6(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  83. Hyun E, Andrade-Gordon P, Steinhoff M, Vergnolle N. Protease-activated receptor-2 activation: a major actor in intestinal inflammation. Gut. 2008;57(9):1222–9.

    Article  CAS  PubMed  Google Scholar 

  84. Coelho AM, Vergnolle N, Guiard B, Fioramonti J, Bueno L. Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats. Gastroenterology. 2002;122(4):1035–47.

    Article  CAS  PubMed  Google Scholar 

  85. Kayssi A, Amadesi S, Bautista F, Bunnett NW, Vanner S. Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon. J Physiol. 2007;580(Pt.3):977–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Auge C, Balz-Hara D, Steinhoff M, Vergnolle N, Cenac N. Protease-activated receptor-4 (PAR 4): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterol Motil. 2009;21(11):1189–e107.

    Article  CAS  PubMed  Google Scholar 

  87. Annahazi A, Gecse K, Dabek M, Ait-Belgnaoui A, Rosztoczy A, Roka R, et al. Fecal proteases from diarrheic-IBS and ulcerative colitis patients exert opposite effect on visceral sensitivity in mice. Pain. 2009;144(1–2):209–17.

    Article  CAS  PubMed  Google Scholar 

  88. Clapham DE. TRP channels as cellular sensors. Nature. 2003;426(6966):517–24.

    Article  CAS  PubMed  Google Scholar 

  89. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–47.

    Article  CAS  PubMed  Google Scholar 

  90. Jones 3rd RC, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci. 2005;25(47):10981–9.

    Article  CAS  PubMed  Google Scholar 

  91. Jones 3rd RC, Otsuka E, Wagstrom E, Jensen CS, Price MP, Gebhart GF. Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology. 2007;133(1):184–94.

    Article  PubMed  Google Scholar 

  92. Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology. 2007;132(2):615–27.

    Article  CAS  PubMed  Google Scholar 

  93. Akbar A, Yiangou Y, Facer P, Walters JR, Anand P, Ghosh S. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut. 2008;57(7):923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Wanrooij SJ, Wouters MM, Van Oudenhove L, Vanbrabant W, Mondelaers S, Kollmann P, et al. Sensitivity testing in irritable bowel syndrome with rectal capsaicin stimulations: role of TRPV1 upregulation and sensitization in visceral hypersensitivity? Am J Gastroenterol. 2014;109(1):99–109.

    Article  PubMed  CAS  Google Scholar 

  95. Sugiuar T, Bielefeldt K, Gebhart GF. TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. J Neurosci. 2004;24(43):9521–30.

    Article  PubMed  CAS  Google Scholar 

  96. Wouters MM, Balemans D, Van Wanrooy S, Dooley J, Cibert-Goton V, Alpizar YA, et al. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology. 2016;150(4):875–87.e9.

    Article  CAS  PubMed  Google Scholar 

  97. Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N. Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology. 2008;135(3):937–46.e1–2.

    Article  CAS  PubMed  Google Scholar 

  98. Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology. 2008;134(7):2059–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF, et al. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1288–98.

    Article  CAS  PubMed  Google Scholar 

  100. Cenac N, Altier C, Motta JP, d’Aldebert E, Galeano S, Zamponi GW, et al. Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut. 2010;59(4):481–8.

    Article  CAS  PubMed  Google Scholar 

  101. Poole DP, Pelayo JC, Cattaruzza F, Kuo YM, Gai G, Chiu JV, et al. Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine. Gastroenterology. 2011;141(2):565–75.e4.

    Article  CAS  PubMed  Google Scholar 

  102. Cenac N, Bautzova T, Le Faouder P, Veldhuis NA, Poole DP, Rolland C, et al. Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology. 2015;149(2):433–44. e7.

    Article  CAS  PubMed  Google Scholar 

  103. Mcmillan NA, Creelman CD. Detection theory: a user’s guide. 2nd ed. Mahwah: Laurence Elbaum; 2005. 493 p.

    Google Scholar 

  104. Clark WC. Pain sensitivity and the report of pain: an introduction to sensory decision theory. Anesthesiology. 1974;40(3):272–87.

    Article  CAS  PubMed  Google Scholar 

  105. Harvey LOJ. Detection sensitivity and response bias. 2003.

    Google Scholar 

  106. Dorn SD, Palsson OS, Thiwan SI, Kanazawa M, Clark WC, van Tilburg MA, et al. Increased colonic pain sensitivity in irritable bowel syndrome is the result of an increased tendency to report pain rather than increased neurosensory sensitivity. Gut. 2007;56(9):1202–9.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Corsetti M, Ogliari C, Marino B, Basilisco G. Perceptual sensitivity and response bias during rectal distension in patients with irritable bowel syndrome. Neurogastroenterol Motil. 2005;17(4):541–7.

    Article  CAS  PubMed  Google Scholar 

  108. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.

    Article  PubMed  Google Scholar 

  109. Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci. 2007;27(45):12396–406.

    Article  CAS  PubMed  Google Scholar 

  110. Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology. 2009;136(4):1339–48. e1–2.

    Article  CAS  PubMed  Google Scholar 

  111. Winston JH, Xu GY, Sarna SK. Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology. 2010;138(1):294–304. e3.

    Article  CAS  PubMed  Google Scholar 

  112. Coffin B, Bouhassira D, Sabate JM, Barbe L, Jian R. Alteration of the spinal modulation of nociceptive processing in patients with irritable bowel syndrome. Gut. 2004;53(10):1465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou Q, Fillingim RB, Riley 3rd JL, Malarkey WB, Verne GN. Central and peripheral hypersensitivity in the irritable bowel syndrome. Pain. 2010;148(3):454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Piche M, Arsenault M, Poitras P, Rainville P, Bouin M. Widespread hypersensitivity is related to altered pain inhibition processes in irritable bowel syndrome. Pain. 2010;148(1):49–58.

    Article  PubMed  Google Scholar 

  115. Stabell N, Stubhaug A, Flaegstad T, Mayer E, Naliboff BD, Nielsen CS. Widespread hyperalgesia in adolescents with symptoms of irritable bowel syndrome: results from a large population-based study. J Pain. 2014;15(9):898–906.

    Article  PubMed  Google Scholar 

  116. Williams AE, Heitkemper M, Self MM, Czyzewski DI, Shulman RJ. Endogenous inhibition of somatic pain is impaired in girls with irritable bowel syndrome compared with healthy girls. J Pain. 2013;14(9):921–30.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Liu X, Silverman A, Kern M, Ward BD, Li SJ, Shaker R, Sood MR. Excessive coupling of the salience network with intrinsic neurocognitive brain networks during rectal distension in adolescents with irritable bowel syndrome: a preliminary report. Neurogastroenterol Motil. 2016;28(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  118. Wiley JW, Higgins GA, Athey BD. Stress and glucocorticoid receptor transcriptional programming in time and space: Implications for the brain-gut axis. Neurogastroenterol Motil. 2016;28(1):12–25.

    Article  CAS  PubMed  Google Scholar 

  119. Corsetti M, Akyuz F, Tack J. Targeting tachykinin receptors for the treatment of functional gastrointestinal disorders with a focus on irritable bowel syndrome. Neurogastroenterol Motil. 2015;27(10):1354–70.

    Article  CAS  PubMed  Google Scholar 

  120. Fioramonti J, Bueno L. Role of cannabinoid receptors in the control of gastrointestinal motility and perception. Expert Rev Gastroenterol Hepatol. 2008;2(3):385–97.

    Article  CAS  PubMed  Google Scholar 

  121. Zoppi S, Madrigal JL, Perez-Nievas BG, Marin-Jimenez I, Caso JR, Alou L, et al. Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation. Am J Physiol Gastrointest Liver Physiol. 2012;302(5):G565–71.

    Article  CAS  PubMed  Google Scholar 

  122. Hughes PA, Castro J, Harrington AM, Isaacs N, Moretta M, Hicks GA, et al. Increased kappa-opioid receptor expression and function during chronic visceral hypersensitivity. Gut. 2014;63(7):1199–200.

    Article  PubMed  Google Scholar 

  123. Auteri M, Zizzo MG, Serio R. The GABAergic system and the gastrointestinal physiopathology. Curr Pharm Des. 2015;21(34):4996–5016.

    Article  CAS  PubMed  Google Scholar 

  124. Gosselin RD, O’Connor RM, Tramullas M, Julio-Pieper M, Dinan TG, Cryan JF. Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology. 2010;138(7):2418–25.

    Article  CAS  PubMed  Google Scholar 

  125. Hockley JR, Boundouki G, Cibert-Goton V, McGuire C, Yip PK, Chan C, et al. Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain. 2014;155(10):1962–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology. 2014;147(2):303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hockley JR, Winchester WJ, Bulmer DC. The voltage-gated sodium channel NaV 1.9 in visceral pain. Neurogastroenterol Motil. 2016;28(3):316–26.

    Article  CAS  PubMed  Google Scholar 

  128. Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol. 2000;10(1):138–45.

    Article  CAS  PubMed  Google Scholar 

  129. Al-Chaer E, Kawasaki M, Pasricha P. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology. 2000;119(5):1276–85.

    Article  CAS  PubMed  Google Scholar 

  130. Liu LS, Winston JH, Shenoy MM, Song GQ, Chen JD, Pasricha PJ. A rat model of chronic gastric sensorimotor dysfunction resulting from transient neonatal gastric irritation. Gastroenterology. 2008;134(7):2070–9.

    Article  PubMed  Google Scholar 

  131. Barreau F, Ferrier L, Fioramonti J, Bueno L. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut. 2004;53(4):501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Smith C, Nordstrom E, Sengupta JN, Miranda A. Neonatal gastric suctioning results in chronic visceral and somatic hyperalgesia: role of corticotropin releasing factor. Neurogastroenterol Motil. 2007;19(8):692–9.

    Article  CAS  PubMed  Google Scholar 

  133. Peters JW, Schouw R, Anand KJ, van Dijk M, Duivenvoorden HJ, Tibboel D. Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain. 2005;114(3):444–54.

    Article  PubMed  Google Scholar 

  134. Wollgarten-Hadamek I, Hohmeister J, Demirakca S, Zohsel K, Flor H, Hermann C. Do burn injuries during infancy affect pain and sensory sensitivity in later childhood? Pain. 2009;141(1–2):165–72.

    Article  PubMed  Google Scholar 

  135. Saps M, Bonilla S. Early life events: infants with pyloric stenosis have a higher risk of developing chronic abdominal pain in childhood. J Pediatr. 2011;159(4):551–4. e1.

    Article  PubMed  Google Scholar 

  136. Videlock EJ, Adeyemo M, Licudine A, Hirano M, Ohning G, Mayer M, et al. Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome. Gastroenterology. 2009;137(6):1954–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mallen CD, Peat G, Thomas E, Croft PR. Is chronic pain in adulthood related to childhood factors? A population-based case-control study of young adults. J Rheumatol. 2006;33(11):2286–90.

    PubMed  Google Scholar 

  138. Hohmeister J, Demirakca S, Zohsel K, Flor H, Hermann C. Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur J Pain. 2009;13(1):94–101.

    Article  PubMed  Google Scholar 

  139. Mayer EA, Raybould HE. Role of visceral afferent mechanisms in functional bowel disorders. Gastroenterology. 1990;99(6):1688–704.

    CAS  PubMed  Google Scholar 

  140. Kirkup AJ, Brunsden AM, Grundy D. Receptors and transmission in the brain-gut axis: potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G787–94.

    CAS  PubMed  Google Scholar 

  141. Christianson JA, Bielefeldt K, Altier C, Cenac N, Davis BM, Gebhart GF, et al. Development, plasticity and modulation of visceral afferents. Brain Res Rev. 2009;60(1):171–86.

    Article  CAS  PubMed  Google Scholar 

  142. Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O’Donnell TA, et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology. 2009;137(6):2084–95. e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Masamichi S, Bin F, Gebhart GF. Peripheral and central P2X3 receptor contributions to colon mechanosensitivity and hypersensitivity in the mouse. Gastroenterology. 2009;137(6):2096–104.

    Article  CAS  Google Scholar 

  144. Zielinska M, Jarmuz A, Wasilewski A, Salaga M, Fichna J. Role of transient receptor potential channels in intestinal inflammation and visceral pain: novel targets in inflammatory bowel diseases. Inflamm Bowel Dis. 2015;21(2):419–27.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Faure M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Faure, C., Righini Grunder, F. (2017). Visceral Sensitivity. In: Faure, C., Thapar, N., Di Lorenzo, C. (eds) Pediatric Neurogastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-43268-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43268-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43266-3

  • Online ISBN: 978-3-319-43268-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics