Skip to main content

Development of the Enteric Neuromuscular System

  • Chapter
  • First Online:
Pediatric Neurogastroenterology

Abstract

In order for the gut to perform essential functions, including moving contents along its length via the organised movement of peristalsis, as well as absorption of water and electrolytes, secretion from glands and regulation of blood flow, the integrated function of multiple tissues and cell types must occur. The mature, functioning neuromuscular system of the gut is comprised of smooth muscle cells, neurons and glial cells of the enteric nervous system (ENS) and interstitial cells of Cajal (ICCs). These diverse components arise from distinct sources during development and must, during the course of embryogenesis, acquire appropriate integration to enable a functioning neuromuscular system to commence coordinated activity around birth. Here, we utilise information gleaned from studies in animal models such as mouse, chick, guinea pig, and zebrafish, as well as human studies, to describe the development of each constituent part of the neuromuscular system as well as to outline how these component parts become integrated into a functioning whole. Moreover, our discussions touch on diseases affecting development of the enteric neuromuscular system, notably Hirschsprung’s disease (HSCR), one of the most common gut motility disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts DJ. Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn. 2000;219:109–20.

    Article  CAS  PubMed  Google Scholar 

  2. van den Brink GR. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol Rev. 2007;87:1343–75.

    Article  PubMed  CAS  Google Scholar 

  3. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–72.

    CAS  PubMed  Google Scholar 

  4. Masumoto K, Nada O, Suita S, et al. The formation of the chick ileal muscle layers as revealed by alpha-smooth muscle actin immunohistochemistry. Anat Embryol (Berl). 2000;201:121–9.

    Article  CAS  Google Scholar 

  5. Gabella G. Development of visceral smooth muscle. Results Probl Cell Differ. 2002;38:1–37.

    Article  PubMed  Google Scholar 

  6. McHugh KM. Molecular analysis of smooth muscle development in the mouse. Dev Dyn. 1995;204:278–90.

    Article  CAS  PubMed  Google Scholar 

  7. Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 2005;319:367–82.

    Article  PubMed  Google Scholar 

  8. Gunst SJ, Zhang W. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol. 2008;295:C576–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burns AJ, Roberts RR, Bornstein JC, et al. Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages. Semin Pediatr Surg. 2009;18:196–205.

    Article  PubMed  Google Scholar 

  10. Roberts RR, Ellis M, Gwynne RM, et al. The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. J Physiol. 2010;588:1153–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45:1–14.

    Article  CAS  PubMed  Google Scholar 

  12. Young HM, Newgreen D, Burns AJ. The Development of the enteric nervous system in relation to Hirschsprung’s disease. In: Ferretti P, Copp AJ, Tickle C, Moore G, editors. Embryos, genes and birth defects. 2nd ed. Chichester: Wiley; 2006. p. 263–300.

    Google Scholar 

  13. Kenny SE, Tam PK, Garcia-Barcelo M. Hirschsprung’s disease. Semin Pediatr Surg. 2010;19:194–200.

    Article  PubMed  Google Scholar 

  14. Obermayr F, Hotta R, Enomoto H, et al. Development and developmental disorders of the enteric nervous system. Nature reviews. Gastroenterol Hepatol. 2013;10:43–57.

    CAS  Google Scholar 

  15. Bealer JF, Natuzzi ES, Buscher C, et al. Nitric oxide synthase is deficient in the aganglionic colon of patients with Hirschsprung’s disease. Pediatrics. 1994;93:647–51.

    CAS  PubMed  Google Scholar 

  16. Larsson LT, Shen Z, Ekblad E, et al. Lack of neuronal nitric oxide synthase in nerve fibers of aganglionic intestine: a clue to Hirschsprung’s disease. J Pediatr Gastroenterol Nutr. 1995;20:49–53.

    Article  CAS  PubMed  Google Scholar 

  17. Yamataka A, Miyano T, Okazaki T, et al. Correlation between extrinsic nerve fibers and synapses in the muscle layers of bowels affected by Hirschsprung’s disease. J Pediatr Surg. 1992;27:1213–6.

    Article  CAS  PubMed  Google Scholar 

  18. Tennyson VM, Pham TD, Rothman TP, et al. Abnormalities of smooth muscle, basal laminae, and nerves in the aganglionic segments of the bowel of lethal spotted mutant mice. Anat Rec. 1986;215:267–81.

    Article  CAS  PubMed  Google Scholar 

  19. Hillemeier C, Biancani P. Mechanical properties of obstructed colon in a Hirschsprung’s model. Gastroenterology. 1990;99:995–1000.

    Article  CAS  PubMed  Google Scholar 

  20. Won KJ, Torihashi S, Mitsui-Saito M, et al. Increased smooth muscle contractility of intestine in the genetic null of the endothelin ETB receptor: a rat model for long segment Hirschsprung’s disease. Gut. 2002;50:355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barlow AJ, Wallace AS, Thapar N, et al. Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation. Development. 2008;135:1681–91.

    Article  CAS  PubMed  Google Scholar 

  22. Lecoin L, Gabella G, Le Douarin N. Origin of the c-kit-positive interstitial cells in the avian bowel. Development. 1996;122:725–33.

    CAS  PubMed  Google Scholar 

  23. Antonucci A, Fronzoni L, Cogliandro L, et al. Chronic intestinal pseudo-obstruction. World J Gastroenterol. 2008;14:2953–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mao J, Kim BM, Rajurkar M, et al. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development. 2010;137:1721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Furness JB. The enteric nervous system. Oxford: Wiley; 2006.

    Google Scholar 

  26. Furness JB, Jones C, Nurgali K, et al. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol. 2004;72:143–64.

    Article  CAS  PubMed  Google Scholar 

  27. Powley TL. Vagal input to the enteric nervous system. Gut. 2000;47 Suppl 4:iv30–2; discussion iv36.

    PubMed  PubMed Central  Google Scholar 

  28. Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286–94.

    Article  CAS  PubMed  Google Scholar 

  29. Gabella G. The number of neurons in the small intestine of mice, guinea-pigs and sheep. Neuroscience. 1987;22:737–52.

    Article  CAS  PubMed  Google Scholar 

  30. Hao MM, Young HM. Development of enteric neuron diversity. J Cell Mol Med. 2009;13:1193–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development of the enteric nervous system. J Neurobiol. 1993;24:199–214.

    Article  CAS  PubMed  Google Scholar 

  32. Ruhl A. Glial cells in the gut. Neurogastroenterol Motil. 2005;17:777–90.

    Article  CAS  PubMed  Google Scholar 

  33. Laranjeira C, Sandgren K, Kessaris N, et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest. 2011;121:3412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boesmans W, Lasrado R, Vanden Berghe P, et al. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia. 2015;63:229–41.

    Article  PubMed  Google Scholar 

  35. Kabouridis PS, Lasrado R, McCallum S, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85:289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blaugrund E, Pham TD, Tennyson VM, et al. Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development. 1996;122:309–20.

    CAS  PubMed  Google Scholar 

  37. Durbec PL, Larsson-Blomberg LB, Schuchardt A, et al. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development. 1996;122:349–58.

    CAS  PubMed  Google Scholar 

  38. Anderson RB, Stewart AL, Young HM. Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res. 2006;323:11–25.

    Article  CAS  PubMed  Google Scholar 

  39. Burns AJ, Champeval D, Le Douarin NM. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol. 2000;219:30–43.

    Article  CAS  PubMed  Google Scholar 

  40. Burns AJ, Douarin NM. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development. 1998;125:4335–47.

    CAS  PubMed  Google Scholar 

  41. Wang X, Chan AK, Sham MH, et al. Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology. 2011;141:992–1002.e1–6.

    Article  PubMed  Google Scholar 

  42. McKeown SJ, Chow CW, Young HM. Development of the submucous plexus in the large intestine of the mouse. Cell Tissue Res. 2001;303:301–5.

    Article  CAS  PubMed  Google Scholar 

  43. Druckenbrod NR, Epstein ML. The pattern of neural crest advance in the cecum and colon. Dev Biol. 2005;287:125–33.

    Article  CAS  PubMed  Google Scholar 

  44. Druckenbrod NR, Epstein ML. Behavior of enteric neural crest-derived cells varies with respect to the migratory wavefront. Dev Dyn. 2007;236:84–92.

    Article  PubMed  Google Scholar 

  45. Young HM, Bergner AJ, Anderson RB, et al. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol. 2004;270:455–73.

    Article  CAS  PubMed  Google Scholar 

  46. Nishiyama C, Uesaka T, Manabe T, et al. Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci. 2012;15:1211–8.

    Article  CAS  PubMed  Google Scholar 

  47. Young HM, Bergner AJ, Simpson MJ, et al. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol. 2014;12:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hao MM, Anderson RB, Kobayashi K, et al. The migratory behavior of immature enteric neurons. Dev Neurobiol. 2009;69:22–35.

    Article  CAS  PubMed  Google Scholar 

  49. Manie S, Santoro M, Fusco A, et al. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet. 2001;17:580–9.

    Article  CAS  PubMed  Google Scholar 

  50. Schuchardt A, D’Agati V, Larsson-Blomberg L, et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.

    Article  CAS  PubMed  Google Scholar 

  51. Tam PK, Garcia-Barcelo M. Genetic basis of Hirschsprung’s disease. Pediatr Surg Int. 2009;25:543–58.

    Article  PubMed  Google Scholar 

  52. Lantieri F, Griseri P, Ceccherini I. Molecular mechanisms of RET-induced Hirschsprung pathogenesis. Ann Med. 2006;38:11–9.

    Article  CAS  PubMed  Google Scholar 

  53. Young HM, Hearn CJ, Farlie PG, et al. GDNF is a chemoattractant for enteric neural cells. Dev Biol. 2001;229:503–16.

    Article  CAS  PubMed  Google Scholar 

  54. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci. 2007;8:466–79.

    Article  CAS  PubMed  Google Scholar 

  55. Gershon MD. Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci. 2010;33:446–56.

    Article  CAS  PubMed  Google Scholar 

  56. Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest. 2015;125:899–907.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Goldstein AM, Hofstra RM, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet. 2013;83:307–16.

    Article  CAS  PubMed  Google Scholar 

  58. Sasselli V, Pachnis V, Burns AJ. The enteric nervous system. Dev Biol. 2012;366:64–73.

    Article  CAS  PubMed  Google Scholar 

  59. Young HM, Turner KN, Bergner AJ. The location and phenotype of proliferating neural-crest-derived cells in the developing mouse gut. Cell Tissue Res. 2005;320:1–9.

    Article  CAS  PubMed  Google Scholar 

  60. Stanchina L, Baral V, Robert F, et al. Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Dev Biol. 2006;295:232–49.

    Article  CAS  PubMed  Google Scholar 

  61. Gianino S, Grider JR, Cresswell J, et al. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development. 2003;130:2187–98.

    Article  CAS  PubMed  Google Scholar 

  62. Simpson MJ, Zhang DC, Mariani M, et al. Cell proliferation drives neural crest cell invasion of the intestine. Dev Biol. 2007;302:553–68.

    Article  CAS  PubMed  Google Scholar 

  63. Cheeseman BL, Zhang D, Binder BJ, et al. Cell lineage tracing in the developing enteric nervous system: superstars revealed by experiment and simulation. J R Soc Interface. 2014;11:20130815.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Newgreen DF, Dufour S, Howard MJ, et al. Simple rules for a “simple” nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev Biol. 2013;382:305–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heuckeroth RO, Lampe PA, Johnson EM, et al. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol. 1998;200:116–29.

    Article  CAS  PubMed  Google Scholar 

  66. Hearn CJ, Murphy M, Newgreen D. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev Biol. 1998;197:93–105.

    Article  CAS  PubMed  Google Scholar 

  67. Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron. 2003;40:905–16.

    Article  CAS  PubMed  Google Scholar 

  68. Nagy N, Goldstein AM. Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol. 2006;293(1):203–17.

    Article  CAS  PubMed  Google Scholar 

  69. Ngan ES, Shum CK, Poon HC, et al. Prokineticin-1 (Prok-1) works coordinately with glial cell line-derived neurotrophic factor (GDNF) to mediate proliferation and differentiation of enteric neural crest cells. Biochim Biophys Acta. 1783;2008:467–78.

    Google Scholar 

  70. Sato Y, Heuckeroth RO. Retinoic acid regulates murine enteric nervous system precursor proliferation, enhances neuronal precursor differentiation, and reduces neurite growth in vitro. Dev Biol. 2008;320:185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wright-Jin EC, Grider JR, Duester G, et al. Retinaldehyde dehydrogenase enzymes regulate colon enteric nervous system structure and function. Dev Biol. 2013;381:28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rothman TP, Sherman D, Cochard P, et al. Development of the monoaminergic innervation of the avian gut: transient and permanent expression of phenotypic markers. Dev Biol. 1986;116:357–80.

    Article  CAS  PubMed  Google Scholar 

  73. Sang Q, Young HM. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat Rec. 1998;251:185–99.

    Article  CAS  PubMed  Google Scholar 

  74. Young HM, Bergner AJ, Muller T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol. 2003;456:1–11.

    Article  PubMed  Google Scholar 

  75. Baetge G, Gershon MD. Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol. 1989;132:189–211.

    Article  CAS  PubMed  Google Scholar 

  76. Young HM, Ciampoli D, Hsuan J, et al. Expression of Ret-, p75(NTR)-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev Dyn. 1999;216:137–52.

    Article  CAS  PubMed  Google Scholar 

  77. Hao MM, Bornstein JC, Vanden Berghe P, et al. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol. 2013;382:365–74.

    Article  CAS  PubMed  Google Scholar 

  78. Pham TD, Gershon MD, Rothman TP. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J Comp Neurol. 1991;314:789–98.

    Article  CAS  PubMed  Google Scholar 

  79. Rothman TP, Tennyson VM, Gershon MD. Colonization of the bowel by the precursors of enteric glia: studies of normal and congenitally aganglionic mutant mice. J Comp Neurol. 1986;252:493–506.

    Article  CAS  PubMed  Google Scholar 

  80. Hendershot TJ, Liu H, Sarkar AA, et al. Expression of Hand2 is sufficient for neurogenesis and cell type-specific gene expression in the enteric nervous system. Dev Dyn. 2007;236:93–105.

    Article  CAS  PubMed  Google Scholar 

  81. D’Autreaux F, Morikawa Y, Cserjesi P, et al. Hand2 is necessary for terminal differentiation of enteric neurons from crest-derived precursors but not for their migration into the gut or for formation of glia. Development. 2007;134:2237–49.

    Article  PubMed  CAS  Google Scholar 

  82. Hens J, Vanderwinden JM, De Laet MH, et al. Morphological and neurochemical identification of enteric neurones with mucosal projections in the human small intestine. J Neurochem. 2001;76:464–71.

    Article  CAS  PubMed  Google Scholar 

  83. Porter AJ, Wattchow DA, Brookes SJ, et al. The neurochemical coding and projections of circular muscle motor neurons in the human colon. Gastroenterology. 1997;113:1916–23.

    Article  CAS  PubMed  Google Scholar 

  84. Wattchow DA, Porter AJ, Brookes SJ, et al. The polarity of neurochemically defined myenteric neurons in the human colon. Gastroenterology. 1997;113:497–506.

    Article  CAS  PubMed  Google Scholar 

  85. Rollo BN, Zhang D, Simkin JE, et al. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells. F1000Res. 2015;4:113.

    PubMed  PubMed Central  Google Scholar 

  86. Hofstra RM, Landsvater RM, Ceccherini I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367:375–6.

    Article  CAS  PubMed  Google Scholar 

  87. Meier-Ruge WA, Bruder E, Kapur RP. Intestinal neuronal dysplasia type B: one giant ganglion is not good enough. Pediatr Dev Pathol. 2006;9:444–52.

    Article  PubMed  Google Scholar 

  88. Shirasawa S, Yunker AM, Roth KA, et al. Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med. 1997;3:646–50.

    Article  CAS  PubMed  Google Scholar 

  89. Dingemann J, Puri P. Isolated hypoganglionosis: systematic review of a rare intestinal innervation defect. Pediatr Surg Int. 2010;26:1111–5.

    Article  PubMed  Google Scholar 

  90. Gershon MD. The enteric nervous system: a second brain. Hosp Pract (Off Ed). 1999;34:31–2, 35–8, 41–2 passim.

    Article  CAS  Google Scholar 

  91. Shen L, Pichel JG, Mayeli T, et al. Gdnf haploinsufficiency causes Hirschsprung-like intestinal obstruction and early-onset lethality in mice. Am J Hum Genet. 2002;70:435–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carniti C, Belluco S, Riccardi E, et al. The Ret(C620R) mutation affects renal and enteric development in a mouse model of Hirschsprung’s disease. Am J Pathol. 2006;168:1262–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Young HM, Jones BR, McKeown SJ. The projections of early enteric neurons are influenced by the direction of neural crest cell migration. J Neurosci. 2002;22:6005–18.

    CAS  PubMed  Google Scholar 

  94. Sasselli V, Boesmans W, Vanden Berghe P, et al. Planar cell polarity genes control the connectivity of enteric neurons. J Clin Invest. 2013;123:1763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shepherd IT, Raper JA. Collapsin-1/semaphorin D is a repellent for chick ganglion of Remak axons. Dev Biol. 1999;212:42–53.

    Article  CAS  PubMed  Google Scholar 

  96. Olden T, Akhtar T, Beckman SA, et al. Differentiation of the zebrafish enteric nervous system and intestinal smooth muscle. Genesis. 2008;46:484–98.

    Article  PubMed  Google Scholar 

  97. Heanue TA, Pachnis V. Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proc Natl Acad Sci U S A. 2006;103:6919–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vannucchi MG, Faussone-Pellegrini MS. Synapse formation during neuron differentiation: an in situ study of the myenteric plexus during murine embryonic life. J Comp Neurol. 2000;425:369–81.

    Article  CAS  PubMed  Google Scholar 

  99. Vohra BP, Tsuji K, Nagashimada M, et al. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev Biol. 2006;298:259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116:369–75.

    CAS  PubMed  Google Scholar 

  101. Burns AJ, Herbert TM, Ward SM, et al. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res. 1997;290:11–20.

    Article  CAS  PubMed  Google Scholar 

  102. Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal in human gut and gastrointestinal disease. Microsc Res Tech. 1999;47:344–60.

    Article  CAS  PubMed  Google Scholar 

  103. Rumessen JJ, Vanderwinden JM. Interstitial cells in the musculature of the gastrointestinal tract: Cajal and beyond. Int Rev Cytol. 2003;229:115–208.

    Article  CAS  PubMed  Google Scholar 

  104. Torihashi S, Ward SM, Nishikawa S, et al. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280:97–111.

    CAS  PubMed  Google Scholar 

  105. Ward SM, Burns AJ, Torihashi S, et al. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994;480(Pt 1):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huizinga JD, Thuneberg L, Kluppel M, et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373:347–9.

    Article  CAS  PubMed  Google Scholar 

  107. Burns AJ, Lomax AE, Torihashi S, et al. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A. 1996;93:12008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ward SM, McLaren GJ, Sanders KM. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. J Physiol. 2006;573:147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blair PJ, Rhee PL, Sanders KM, et al. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil. 2014;20:294–317.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94:859–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kurahashi M, Zheng H, Dwyer L, et al. A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol. 2011;589:697–710.

    Article  CAS  PubMed  Google Scholar 

  112. Kurahashi M, Nakano Y, Hennig GW, et al. Platelet-derived growth factor receptor alpha-positive cells in the tunica muscularis of human colon. J Cell Mol Med. 2012;16:1397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Young HM, Ciampoli D, Southwell BR, et al. Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol. 1996;180:97–107.

    Article  CAS  PubMed  Google Scholar 

  114. Kenny SE, Connell G, Woodward MN, et al. Ontogeny of interstitial cells of Cajal in the human intestine. J Pediatr Surg. 1999;34:1241–7.

    Article  CAS  PubMed  Google Scholar 

  115. Wester T, Eriksson L, Olsson Y, et al. Interstitial cells of Cajal in the human fetal small bowel as shown by c-kit immunohistochemistry. Gut. 1999;44:65–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59:384–401.

    Article  CAS  PubMed  Google Scholar 

  117. Rich A, Leddon SA, Hess SL, et al. Kit-like immunoreactivity in the zebrafish gastrointestinal tract reveals putative ICC. Dev Dyn. 2007;236:903–11.

    Article  CAS  PubMed  Google Scholar 

  118. Uyttebroek L, Shepherd IT, Hubens G, et al. Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells. Cell Tissue Res. 2013;354:355–70.

    Article  CAS  PubMed  Google Scholar 

  119. Sanders KM, Ordog T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol. 2002;282:G747–56.

    Article  CAS  PubMed  Google Scholar 

  120. Burns AJ. Disorders of interstitial cells of Cajal. J Pediatr Gastroenterol Nutr. 2007;45 Suppl 2:S103–6.

    Article  PubMed  Google Scholar 

  121. Huizinga JD, Chen JH. Interstitial cells of Cajal: update on basic and clinical science. Curr Gastroenterol Rep. 2014;16:363.

    Article  PubMed  Google Scholar 

  122. Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of Cajal to a smooth muscle phenotype. Gastroenterology. 1999;117:140–8.

    Article  CAS  PubMed  Google Scholar 

  123. Sanders KM, Ordog T, Koh SD, et al. Development and plasticity of interstitial cells of Cajal. Neurogastroenterol Motil. 1999;11:311–38.

    Article  CAS  PubMed  Google Scholar 

  124. Faussone-Pellegrini MS, Vannucchi MG, Ledder O, et al. Plasticity of interstitial cells of Cajal: a study of mouse colon. Cell Tissue Res. 2006;325:211–7.

    Article  PubMed  Google Scholar 

  125. Huizinga JD, Zarate N, Farrugia G. Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 2009;137:1548–56.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yamataka A, Kato Y, Tibboel D, et al. A lack of intestinal pacemaker (c-kit) in aganglionic bowel of patients with Hirschsprung’s disease. J Pediatr Surg. 1995;30:441–4.

    Article  CAS  PubMed  Google Scholar 

  127. Vanderwinden JM, Rumessen JJ, Liu H, et al. Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology. 1996;111:901–10.

    Article  CAS  PubMed  Google Scholar 

  128. Horisawa M, Watanabe Y, Torihashi S. Distribution of c-Kit immunopositive cells in normal human colon and in Hirschsprung’s disease. J Pediatr Surg. 1998;33:1209–14.

    Article  CAS  PubMed  Google Scholar 

  129. Newman CJ, Laurini RN, Lesbros Y, et al. Interstitial cells of Cajal are normally distributed in both ganglionated and aganglionic bowel in Hirschsprung’s disease. Pediatr Surg Int. 2003;19:662–8.

    Article  CAS  PubMed  Google Scholar 

  130. Ward SM, Ordog T, Bayguinov JR, et al. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology. 1999;117:584–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Burns Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heanue, T.A., Burns, A.J. (2017). Development of the Enteric Neuromuscular System. In: Faure, C., Thapar, N., Di Lorenzo, C. (eds) Pediatric Neurogastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-43268-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43268-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43266-3

  • Online ISBN: 978-3-319-43268-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics