Advertisement

The Rodent Corpus Luteum

  • Paula Accialini
  • Silvia F. Hernandez
  • Dalhia Abramovich
  • Marta Tesone
Chapter

Abstract

The corpus luteum (CL) is a tissue having great differences among species. Rodents have particular features in CL formation, function, and regression. The different types of mammalian corpora lutea can be classified in CL of pregnancy, cyclic CL, CL of lactation, and CL of pseudo-pregnancy. Among mammals, only rodents present the four types of corpora lutea.

Rodents are an excellent model to study reproductive physiology. Advantages of this animal model include their small size, their high reproductive rate, and the possibility to obtain inbred strains. Transgenic technologies developed in mice are also a helpful strategy to study gene function. Knowing the similarities and differences among mammalian species is crucial to translate the findings described in rodents to other species.

In the present chapter, we review the regulation of luteinization, the multiple factors involved in this process, the structure and function of the CL, including remodeling, development, and the mechanisms involved in the survival and regression of CL. In particular, we describe the role of the Wnt and Notch signaling pathways in CL function.

Keywords

Ovary Ovulation Steroidogenesis LH PGF2α PRL Angiogenesis VEGF Notch 

References

  1. 1.
    Chaffin CL, VandeVoort CA. Follicle growth, ovulation, and luteal formation in primates and rodents: a comparative perspective. Exp Biol Med (Maywood). 2013;238(5):539–48.CrossRefGoogle Scholar
  2. 2.
    Tomac J, Cekinović Đ, Arapović J. Biology of the corpus luteum. Periodicum Biologorum. 2011;113(1):43–9.Google Scholar
  3. 3.
    Stouffer R, Hennebold J. Structure, function, and regulation of the corpus luteum. In: Plant TM, Zeleznik AJ (eds) Knobil and Neill’s physiology of reproduction, 4th edn. Elsevier; 2015. p. 1023–6.Google Scholar
  4. 4.
    McCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrine-mediated event. Physiol Rev. 1999;79(2):263–323.PubMedGoogle Scholar
  5. 5.
    Takiguchi S, Sugino N, Esato K, Karube-Harada A, Sakata A, Nakamura Y, et al. Differential regulation of apoptosis in the corpus luteum of pregnancy and newly formed corpus luteum after parturition in rats. Biol Reprod. 2004;70(2):313–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Rao MC, Midgley Jr AR, Richards JS. Hormonal regulation of ovarian cellular proliferation. Cell. 1978;14(1):71–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Oonk RB, Krasnow JS, Beattie WG, Richards JS. Cyclic AMP-dependent and -independent regulation of cholesterol side chain cleavage cytochrome P-450 (P-450scc) in rat ovarian granulosa cells and corpora lutea. cDNA and deduced amino acid sequence of rat P-450scc. J Biol Chem. 1989;264(36):21934–42.PubMedGoogle Scholar
  8. 8.
    Hampl A, Pachernik J, Dvorak P. Levels and interactions of p27, cyclin D3, and CDK4 during the formation and maintenance of the corpus luteum in mice. Biol Reprod. 2000;62(5):1393–401.CrossRefPubMedGoogle Scholar
  9. 9.
    Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28(1):117–49.CrossRefPubMedGoogle Scholar
  10. 10.
    Robker RL, Richards JS. Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol. 1998;12(7):924–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy BD. Models of luteinization. Biol Reprod. 2000;63(1):2–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Adukpo S, Kusi KA, Ofori MF, Tetteh JK, Amoako-Sakyi D, Goka BQ, et al. High plasma levels of soluble intercellular adhesion molecule (ICAM)-1 are associated with cerebral malaria. PLoS One. 2013;8(12), e84181.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell. 1996;85(5):733–44.CrossRefPubMedGoogle Scholar
  14. 14.
    McRae RS, Johnston HM, Mihm M, O’Shaughnessy PJ. Changes in mouse granulosa cell gene expression during early luteinization. Endocrinology. 2005;146(1):309–17.CrossRefPubMedGoogle Scholar
  15. 15.
    Huhtaniemi IT, Catt KJ. Induction and maintenance of gonadotropin and lactogen receptors in hypoprolactinemic rats. Endocrinology. 1981;109(2):483–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Le JA, Wilson HM, Shehu A, Mao J, Devi YS, Halperin J, et al. Generation of mice expressing only the long form of the prolactin receptor reveals that both isoforms of the receptor are required for normal ovarian function. Biol Reprod. 2012;86(3):86.CrossRefPubMedGoogle Scholar
  17. 17.
    Gunnet JW, Freeman ME. The mating-induced release of prolactin: a unique neuroendocrine response. Endocr Rev. 1983;4(1):44–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Gunnet JW, Freeman ME. Hypothalamic regulation of mating-induced prolactin release. Effect of electrical stimulation of the medial preoptic area in conscious female rats. Neuroendocrinology. 1984;38(1):12–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Bachelot A, Beaufaron J, Servel N, Kedzia C, Monget P, Kelly PA, et al. Prolactin independent rescue of mouse corpus luteum life span: identification of prolactin and luteinizing hormone target genes. Am J Physiol Endocrinol Metab. 2009;297(3):E676–84.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997;11(2):167–78.CrossRefPubMedGoogle Scholar
  21. 21.
    Binart N, Helloco C, Ormandy CJ, Barra J, Clement-Lacroix P, Baran N, et al. Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology. 2000;141(7):2691–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Byers M, Kuiper GG, Gustafsson JA, Park-Sarge OK. Estrogen receptor-beta mRNA expression in rat ovary: down-regulation by gonadotropins. Mol Endocrinol. 1997;11(2):172–82.PubMedGoogle Scholar
  23. 23.
    Telleria CM, Zhong L, Deb S, Srivastava RK, Park KS, Sugino N, et al. Differential expression of the estrogen receptors alpha and beta in the rat corpus luteum of pregnancy: regulation by prolactin and placental lactogens. Endocrinology. 1998;139(5):2432–42.PubMedGoogle Scholar
  24. 24.
    Couse JF, Yates MM, Deroo BJ, Korach KS. Estrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins. Endocrinology. 2005;146(8):3247–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Peluso JJ, Pru JK. Non-canonical progesterone signaling in granulosa cell function. Reproduction. 2014;147(5):R169–78.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cai Z, Stocco C. Expression and regulation of progestin membrane receptors in the rat corpus luteum. Endocrinology. 2005;146(12):5522–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Goyeneche AA, Deis RP, Gibori G, Telleria CM. Progesterone promotes survival of the rat corpus luteum in the absence of cognate receptors. Biol Reprod. 2003;68(1):151–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Kuranaga E, Kanuka H, Hirabayashi K, Suzuki M, Nishihara M, Takahashi M. Progesterone is a cell death suppressor that downregulates Fas expression in rat corpus luteum. FEBS Lett. 2000;466(2-3):279–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Peluso JJ, Pappalardo A, Losel R, Wehling M. Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone's antiapoptotic action. Endocrinology. 2006;147(6):3133–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Laoharatchatathanin T, Terashima R, Yonezawa T, Kurusu S, Kawaminami M. Augmentation of metastin/kisspeptin mRNA expression by the proestrous luteinizing hormone surge in granulosa cells of rats: implications for luteinization. Biol Reprod. 2015;93(1):15.CrossRefPubMedGoogle Scholar
  31. 31.
    Gaytan F, Garcia-Galiano D, Dorfman MD, Manfredi-Lozano M, Castellano JM, Dissen GA, et al. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology. 2014;155(8):3088–97.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Castellano JM, Gaytan M, Roa J, Vigo E, Navarro VM, Bellido C, et al. Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology. 2006;147(10):4852–62.CrossRefPubMedGoogle Scholar
  33. 33.
    Smith MF, McIntush EW, Ricke WA, Kojima FN, Smith GW. Regulation of ovarian extracellular matrix remodelling by metalloproteinases and their tissue inhibitors: effects on follicular development, ovulation and luteal function. J Reprod Fertil Suppl. 1999;54:367–81.PubMedGoogle Scholar
  34. 34.
    Curry Jr TE, Song L, Wheeler SE. Cellular localization of gelatinases and tissue inhibitors of metalloproteinases during follicular growth, ovulation, and early luteal formation in the rat. Biol Reprod. 2001;65(3):855–65.CrossRefPubMedGoogle Scholar
  35. 35.
    Curry Jr TE, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev. 2003;24(4):428–65.CrossRefPubMedGoogle Scholar
  36. 36.
    Bagavandoss P. Differential distribution of gelatinases and tissue inhibitor of metalloproteinase-1 in the rat ovary. J Endocrinol. 1998;158(2):221–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Miyakoshi K, Murphy MJ, Yeoman RR, Mitra S, Dubay CJ, Hennebold JD. The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies. Biol Reprod. 2006;75(6):823–35.CrossRefPubMedGoogle Scholar
  38. 38.
    Shozu M, Minami N, Yokoyama H, Inoue M, Kurihara H, Matsushima K, et al. ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary. J Mol Endocrinol. 2005;35(2):343–55.CrossRefPubMedGoogle Scholar
  39. 39.
    Doyle KM, Russell DL, Sriraman V, Richards JS. Coordinate transcription of the ADAMTS-1 gene by luteinizing hormone and progesterone receptor. Mol Endocrinol. 2004;18(10):2463–78.CrossRefPubMedGoogle Scholar
  40. 40.
    Nelson SE, McLean MP, Jayatilak PG, Gibori G. Isolation, characterization, and culture of cell subpopulations forming the pregnant rat corpus luteum. Endocrinology. 1992;130(2):954–66.PubMedGoogle Scholar
  41. 41.
    Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA. Macrophages regulate corpus luteum development during embryo implantation in mice. J Clin Invest. 2013;123(8):3472–87.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Boyer A, Goff AK, Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab. 2010;21(1):25–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397(6718):405–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Hsieh M, Johnson MA, Greenberg NM, Richards JS. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology. 2002;143(3):898–908.CrossRefPubMedGoogle Scholar
  45. 45.
    Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998;273(46):30336–43.CrossRefPubMedGoogle Scholar
  46. 46.
    Thakker GD, Hajjar DP, Muller WA, Rosengart TK. The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling. J Biol Chem. 1999;274(15):10002–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol. 2000;14(8):1283–300.CrossRefPubMedGoogle Scholar
  48. 48.
    Hunzicker-Dunn M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell Signal. 2006;18(9):1351–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fan HY, Liu Z, Cahill N, Richards JS. Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol. 2008;22(9):2128–40.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chen DB, Westfall SD, Fong HW, Roberson MS, Davis JS. Prostaglandin F2-alpha stimulates the Raf/MEK1/mitogen-activated protein kinase signaling cascade in bovine luteal cells. Endocrinology. 1998;139(9):3876–85.PubMedGoogle Scholar
  51. 51.
    Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11(5):338–51.CrossRefPubMedGoogle Scholar
  53. 53.
    Johnson J, Espinoza T, McGaughey RW, Rawls A, Wilson-Rawls J. Notch pathway genes are expressed in mammalian ovarian follicles. Mech Dev. 2001;109(2):355–61.CrossRefPubMedGoogle Scholar
  54. 54.
    Vorontchikhina MA, Zimmermann RC, Shawber CJ, Tang H, Kitajewski J. Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation. Gene Expr Patterns. 2005;5(5):701–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Jovanovic VP, Sauer CM, Shawber CJ, Gomez R, Wang X, Sauer MV, et al. Intraovarian regulation of gonadotropin-dependent folliculogenesis depends on notch receptor signaling pathways not involving Delta-like ligand 4 (Dll4). Reprod Biol Endocrinol. 2013;11:43.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hernandez F, Peluffo MC, Stouffer RL, Irusta G, Tesone M. Role of the DLL4-NOTCH system in PGF2alpha-induced luteolysis in the pregnant rat. Biol Reprod. 2011;84(5):859–65.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Accialini P, Hernandez SF, Bas D, Pazos MC, Irusta G, Abramovich D, et al. A link between Notch and progesterone maintains the functionality of the rat corpus luteum. Reproduction. 2015;149(1):1–10.CrossRefPubMedGoogle Scholar
  58. 58.
    Patel T, Gores GJ, Kaufmann SH. The role of proteases during apoptosis. FASEB J. 1996;10(5):587–97.PubMedGoogle Scholar
  59. 59.
    Bachelot A, Binart N. Corpus luteum development: lessons from genetic models in mice. Curr Top Dev Biol. 2005;68:49–84.CrossRefPubMedGoogle Scholar
  60. 60.
    Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001;81(2):629–83.PubMedGoogle Scholar
  61. 61.
    Pharriss BB, Wyngarden LJ. The effect of prostaglandin F2 on the progestogen content of ovaries from pseudopregnant rats. Proc Soc Exp Biol Med. 1969;130(1):92–4.CrossRefPubMedGoogle Scholar
  62. 62.
    Gutknecht G. Antifertility properties of prostaglandin F2. Biol Reprod. 1969;1(4):367–71.CrossRefPubMedGoogle Scholar
  63. 63.
    Strauss III JF, Stambaugh RL. Induction of 20 alpha-hydroxysteroid dehydrogenase in rat corpora lutea of pregnancy by prostaglandin F-2 alpha. Prostaglandins. 1974;5(1):73–85.CrossRefPubMedGoogle Scholar
  64. 64.
    Sugimoto Y, Yamasaki A, Segi E, Tsuboi K, Aze Y, Nishimura T, et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science. 1997;277(5326):681–3.CrossRefPubMedGoogle Scholar
  65. 65.
    Colles SM, Woodford JK, Moncecchi D, Myers-Payne SC, McLean LR, Billheimer JT, et al. Cholesterol interaction with recombinant human sterol carrier protein-2. Lipids. 1995;30(9):795–803.CrossRefPubMedGoogle Scholar
  66. 66.
    Sandhoff TW, McLean MP. Hormonal regulation of steroidogenic acute regulatory (StAR) protein messenger ribonucleic acid expression in the rat ovary. Endocrine. 1996;4:259–67.CrossRefPubMedGoogle Scholar
  67. 67.
    Behrman HR, Grinwich DL, Hichens M. Studies on the mechanism of PGF2alpha and gonadotropin interactions on LH receptor function in corpora lutea during luteolysis. Adv Prostag Thromb Res. 1976;2:655–66.Google Scholar
  68. 68.
    Stocco CO, Chedrese J, Deis RP. Luteal expression of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase, and 20alpha-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486. Biol Reprod. 2001;65(4):1114–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Curlewis JD, Tam SP, Lau P, Kusters DH, Barclay JL, Anderson ST, et al. A prostaglandin F(2alpha) analog induces suppressors of cytokine signaling-3 expression in the corpus luteum of the pregnant rat: a potential new mechanism in luteolysis. Endocrinology. 2002;143(10): 3984–93.CrossRefPubMedGoogle Scholar
  70. 70.
    Stocco C. In vivo and in vitro inhibition of cyp19 gene expression by prostaglandin F2alpha in murine luteal cells: implication of GATA-4. Endocrinology. 2004;145(11):4957–66.CrossRefPubMedGoogle Scholar
  71. 71.
    Peluffo MC, Young KA, Stouffer RL. Dynamic expression of caspase-2, -3, -8, and -9 proteins and enzyme activity, but not messenger ribonucleic acid, in the monkey corpus luteum during the menstrual cycle. J Clin Endocrinol Metab. 2005;90(4):2327–35.CrossRefPubMedGoogle Scholar
  72. 72.
    Peluffo MC, Stouffer RL, Tesone M. Activity and expression of different members of the caspase family in the rat corpus luteum during pregnancy and postpartum. Am J Physiol Endocrinol Metab. 2007;293(5):E1215–23.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Paula Accialini
    • 1
  • Silvia F. Hernandez
    • 1
  • Dalhia Abramovich
    • 1
  • Marta Tesone
    • 1
  1. 1.Laboratorio de Fisiología y Biología Tumoral del OvarioInstituto de Biología y Medicina Experimental (IByME-CONICET)Buenos AiresArgentina

Personalised recommendations