Advertisement

Luteal Steroidogenesis

  • Holly A. LaVoie
Chapter

Abstract

Progesterone is the major functional steroid end product of the corpus luteum. In contrast to the ovarian follicle where mainly the theca cell layer could utilize cholesterol for de novo steroidogenesis, in the corpus luteum both the granulosa- and theca-derived luteal cells have this ability. This increased capacity for de novo steroidogenesis allows greater production of progesterone by the corpus luteum compared to the follicle. Luteinization, particularly of the follicular granulosa cells, is accompanied by a dramatic increase in the expression of genes and their corresponding proteins that mediate progesterone synthesis. The proteins include those involved in cholesterol transport, delivery of cholesterol into the inner mitochondria by steroidogenic acute regulatory protein, conversion of cholesterol to pregnenolone by the cytochrome P450 cholesterol side-chain cleavage complex, and conversion of pregnenolone to progesterone by 3-beta-hydroxysteroid dehydrogenase. Estrogen synthesis capability is lost in the corpora lutea of many species, but in some species such as primates and the pregnant rodent estrogen synthesis is reinitiated in luteal cells through renewed expression of aromatase. Androgen synthesis occurs in luteal cells of species where the corpus luteum makes estrogen and involves the enzymes cytochrome P450 17-alpha-hydroxylase/17, 20 lyase, and 17-beta-hydroxysteroid dehydrogenase. This chapter provides an overview of the hormonal and transcriptional regulation of the genes and proteins involved in luteal steroidogenesis.

Keywords

Steroidogenesis Progesterone Pregnenolone Steroidogenic acute regulatory protein (STARD1) Cytochrome P450 cholesterol side-chain cleavage enzyme (CYP11A1) Cholesterol Low density lipoprotein High density lipoprotein 3-Beta-hydroxysteroid dehydrogenase (HSD3B) Cytochrome P450 17-alpha-hydroxylase/17 20 lyase (CYP17A1) 17-Beta-hydroxysteroid dehydrogenase (HSD17B) Aromatase (CYP19A1) Granulosa Theca Transcription factors Gene promoters Luteinizing hormone Human chorionic gonadotropin START domain proteins 

References

  1. 1.
    McCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrine-mediated event. Physiol Rev. 1999;79:263–323.PubMedGoogle Scholar
  2. 2.
    Magness RR. Maternal cardiovascular and other physiologic responses to the endocrinology of pregnancy. In: Endocrinology of pregnancy. Totowa: Humana Press; 1998. p. 507–39Google Scholar
  3. 3.
    Richards JS, Russell DL, Robker RL, Dajee M, Alliston TN. Molecular mechanisms of ovulation and luteinization. Mol Cell Endocrinol. 1998;145:47–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Gilling-Smith C, Franks S. Ovarian function in assisted reproduction. In: Leung PC, Adashi EY, editors. The ovary. 2nd ed. San Diego: Elsevier Academic Press; 2004. p. 473–88.CrossRefGoogle Scholar
  5. 5.
    Sanders SL, Stouffer RL. Localization of steroidogenic enzymes in macaque luteal tissue during the menstrual cycle and simulated early pregnancy: immunohistochemical evidence supporting the two-cell model for estrogen production in the primate corpus luteum. Biol Reprod. 1997;56:1077–87.PubMedCrossRefGoogle Scholar
  6. 6.
    Stocco C. Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 2008;73:473–87.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    LaVoie HA, King SR. Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood). 2009;234:880–907.CrossRefGoogle Scholar
  8. 8.
    Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996;17:221–44.PubMedGoogle Scholar
  9. 9.
    Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269:28314–22.PubMedGoogle Scholar
  10. 10.
    Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res. 2011;52:2111–35.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tuckey RC, Stevenson PM. Cholesteryl esterase and endogenous cholesteryl ester pools in ovaries from maturing and superovulated immature rats. Biochim Biophys Acta. 1980;618:501–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Grummer RR, Carroll DJ. A review of lipoprotein cholesterol metabolism: importance to ovarian function. J Anim Sci. 1988;66:3160–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Khan I, Belanger A, Chen YD, Gibori G. Influence of high-density lipoprotein on estradiol stimulation of luteal steroidogenesis. Biol Reprod. 1985;32:96–104.PubMedCrossRefGoogle Scholar
  14. 14.
    Brodeur MR, Luangrath V, Bourret G, Falstrault L, Brissette L. Physiological importance of SR-BI in the in vivo metabolism of human HDL and LDL in male and female mice. J Lipid Res. 2005;46:687–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Lopez D, McLean MP. Sterol regulatory element-binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. Endocrinology. 1999;140:5669–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Sekar N, Veldhuis JD. Involvement of Sp1 and SREBP-1a in transcriptional activation of the low density lipoprotein-receptor gene by insulin and luteinizing hormone in cultured porcine granulosa-luteal cells. Am J Physiol Endocrinol Metab. 2004;287:E128–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Bishop CV, Bogan RL, Hennebold JD, Stouffer RL. Analysis of microarray data from the macaque corpus luteum; the search for common themes in primate luteal regression. Mol Hum Reprod. 2011;17:143–51.PubMedCrossRefGoogle Scholar
  18. 18.
    LaVoie HA, Benoit AM, Garmey JC, Dailey RA, Wright DJ, Veldhuis JD. Coordinate developmental expression of genes regulating sterol economy and cholesterol side-chain cleavage in the porcine ovary. Biol Reprod. 1997;57:402–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Clark BJ. The mammalian START domain protein family in lipid transport in health and disease. J Endocrinol. 2012;212:257–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Skiadas CC, Duan S, Correll M, Rubio R, Karaca N, Ginsburg ES, et al. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells. Mol Hum Reprod. 2012;18:362–71.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    LaVoie HA, Whitfield NE, Shi B, King SR, Bose HS, Hui YY. STARD6 is expressed in steroidogenic cells of the ovary and can enhance de novo steroidogenesis. Exp Biol Med (Maywood) 2014;239:430–435.Google Scholar
  22. 22.
    Chanderbhan R, Noland BJ, Scallen TJ, Vahouny GV. Sterol carrier protein 2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis. J Biol Chem. 1982;257:8928–34.PubMedGoogle Scholar
  23. 23.
    Rodriguez-Agudo D, Ren S, Wong E, Marques D, Redford K, Gil G, et al. Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. J Lipid Res. 2008;49:1409–19.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bose HS, Whittal RM, Ran Y, Bose M, Baker BY, Miller WL. StAR-like activity and molten globule behavior of StARD6, a male germ-line protein. Biochemistry. 2008;47:2277–88.PubMedCrossRefGoogle Scholar
  25. 25.
    McLean MP, Puryear TK, Khan I, Azhar S, Billheimer JT, Orly J, et al. Estradiol regulation of sterol carrier protein-2 independent of cytochrome P450 side-chain cleavage expression in the rat corpus luteum. Endocrinology. 1989;125:1337–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Rennert H, Amsterdam A, Billheimer JT, Strauss III JF. Regulated expression of sterol carrier protein 2 in the ovary: a key role for cyclic AMP. Biochemistry. 1991;30:11280–5.PubMedCrossRefGoogle Scholar
  27. 27.
    King SR, LaVoie HA. Gonadal transactivation of STARD1, CYP11A1 and HSD3B. Front Biosci. 2012;17:824–46.CrossRefGoogle Scholar
  28. 28.
    Davis JS, Weakland LL, West LA, Farese RV. Luteinizing hormone stimulates the formation of inositol trisphosphate and cyclic AMP in rat granulosa cells. Evidence for phospholipase C generated second messengers in the action of luteinizing hormone. Biochem J. 1986;238:597–604.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Salvador LM, Maizels E, Hales DB, Miyamoto E, Yamamoto H, Hunzicker-Dunn M. Acute signaling by the LH receptor is independent of protein kinase C activation. Endocrinology. 2002;143:2986–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Flores JA, Aguirre C, Sharma OP, Veldhuis JD. Luteinizing hormone (LH) stimulates both intracellular calcium ion ([Ca2+]i) mobilization and transmembrane cation influx in single ovarian (granulosa) cells: recruitment as a cellular mechanism of LH-[Ca2+]i dose response. Endocrinology. 1998;139:3606–12.PubMedGoogle Scholar
  31. 31.
    Davis JS, West LA, Weakland LL, Farese RV. Human chorionic gonadotropin activates the inositol 1,4,5-trisphosphate-Ca2+ intracellular signalling system in bovine luteal cells. FEBS Lett. 1986;208:287–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Casarini L, Lispi M, Longobardi S, Milosa F, La MA, Tagliasacchi D, et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE. 2012;7, e46682.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, et al. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009;324:938–41.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mukherjee A, Park-Sarge OK, Mayo KE. Gonadotropins induce rapid phosphorylation of the 3′,5′-cyclic adenosine monophosphate response element binding protein in ovarian granulosa cells. Endocrinology. 1996;137:3234–45.PubMedGoogle Scholar
  35. 35.
    Kiriakidou M, McAllister JM, Sugawara T, Strauss III JF. Expression of steroidogenic acute regulatory protein (StAR) in the human ovary. J Clin Endocrinol Metab. 1996;81:4122–8.PubMedGoogle Scholar
  36. 36.
    Ronen-Fuhrmann T, Timberg R, King SR, Hales KH, Hales DB, Stocco DM, et al. Spatio-temporal expression patterns of steroidogenic acute regulatory protein (StAR) during follicular development in the rat ovary. Endocrinology. 1998;139:303–15.PubMedGoogle Scholar
  37. 37.
    Bao B, Garverick HA. Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: a review. J Anim Sci. 1998;76:1903–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Bonnet A, Le Cao KA, Sancristobal M, Benne F, Robert-Granie C, Law-So G, et al. In vivo gene expression in granulosa cells during pig terminal follicular development. Reproduction. 2008;136:211–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Mizutani T, Sonoda Y, Minegishi T, Wakabayashi K, Miyamoto K. Molecular cloning, characterization and cellular distribution of rat steroidogenic acute regulatory protein (StAR) in the ovary. Life Sci. 1997;61:1497–506.PubMedCrossRefGoogle Scholar
  40. 40.
    Balasubramanian K, LaVoie HA, Garmey JC, Stocco DM, Veldhuis JD. Regulation of porcine granulosa cell steroidogenic acute regulatory protein (StAR) by insulin-like growth factor I: synergism with follicle-stimulating hormone or protein kinase A agonist. Endocrinology. 1997;138:433–9.PubMedGoogle Scholar
  41. 41.
    Pescador N, Houde A, Stocco DM, Murphy BD. Follicle-stimulating hormone and intracellular second messengers regulate steroidogenic acute regulatory protein messenger ribonucleic acid in luteinized porcine granulosa cells. Biol Reprod. 1997;57:660–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Eimerl S, Orly J. Regulation of steroidogenic genes by insulin-like growth factor-1 and follicle-stimulating hormone: differential responses of cytochrome p450 side-chain cleavage, steroidogenic acute regulatory protein, and 3beta-hydroxysteroid dehydrogenase/isomerase in rat granulosa cells. Biol Reprod. 2002;67:900–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang YM, Roy SK. Downregulation of follicle-stimulating hormone (FSH)-receptor messenger RNA levels in the hamster ovary: effect of the endogenous and exogenous FSH. Biol Reprod. 2004;70:1580–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Lapolt PS, Tilly JL, Aihara T, Nishimori K, Hsueh AJ. Gonadotropin-induced up- and down-regulation of ovarian follicle-stimulating hormone (FSH) receptor gene expression in immature rats: effects of pregnant mare’s serum gonadotropin, human chorionic gonadotropin, and recombinant FSH. Endocrinology. 1992;130:1289–95.PubMedGoogle Scholar
  45. 45.
    Townson DH, Wang XJ, Keyes PL, Kostyo JL, Stocco DM. Expression of the steroidogenic acute regulatory protein in the corpus luteum of the rabbit: dependence upon the luteotropic hormone, estradiol-17 beta. Biol Reprod. 1996;55:868–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Sekar N, Garmey JC, Veldhuis JD. Mechanisms underlying the steroidogenic synergy of insulin and luteinizing hormone in porcine granulosa cells: joint amplification of pivotal sterol-regulatory genes encoding low-density lipoprotein (LDL) receptor, steroidogenic acute regulatory (StAR) protein and cytochrome P450 side-chain cleavage (P450scc) enzyme. Mol Cell Endocrinol. 2000;159:25–35.PubMedCrossRefGoogle Scholar
  47. 47.
    Rekawiecki R, Nowik M, Kotwica J. Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells. Prostaglandins Other Lipid Mediat. 2005;78:169–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Brankin V, Quinn RL, Webb R, Hunter MG. Evidence for a functional bone morphogenetic protein (BMP) system in the porcine ovary. Domest Anim Endocrinol. 2005;28:367–79.PubMedCrossRefGoogle Scholar
  49. 49.
    Miyoshi T, Otsuka F, Suzuki J, Takeda M, Inagaki K, Kano Y, et al. Mutual regulation of follicle-stimulating hormone signaling and bone morphogenetic protein system in human granulosa cells. Biol Reprod. 2006;74:1073–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Otsuka F, Moore RK, Shimasaki S. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J Biol Chem. 2001;276:32889–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Pierre A, Pisselet C, Dupont J, Mandon-Pepin B, Monniaux D, Monget P, et al. Molecular basis of bone morphogenetic protein-4 inhibitory action on progesterone secretion by ovine granulosa cells. J Mol Endocrinol. 2004;33:805–17.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen YJ, Feng Q, Liu YX. Expression of the steroidogenic acute regulatory protein and luteinizing hormone receptor and their regulation by tumor necrosis factor alpha in rat corpora lutea. Biol Reprod. 1999;60:419–27.PubMedCrossRefGoogle Scholar
  53. 53.
    Chang HM, Cheng JC, Klausen C, Taylor EL, Leung PC. Effects of recombinant activins on steroidogenesis in human granulosa-lutein cells. J Clin Endocrinol Metab. 2014;99:E1922–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Sandhoff TW, McLean MP. Repression of the rat steroidogenic acute regulatory (StAR) protein gene by PGF2alpha is modulated by the negative transcription factor DAX-1. Endocrine. 1999;10:83–91.PubMedCrossRefGoogle Scholar
  55. 55.
    Juengel JL, Meberg BM, Turzillo AM, Nett TM, Niswender GD. Hormonal regulation of messenger ribonucleic acid encoding steroidogenic acute regulatory protein in ovine corpora lutea. Endocrinology. 1995;136:5423–9.PubMedGoogle Scholar
  56. 56.
    Chung PH, Sandhoff TW, McLean MP. Hormone and prostaglandin F2 alpha regulation of messenger ribonucleic acid encoding steroidogenic acute regulatory protein in human corpora lutea. Endocrine. 1998;8:153–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen YJ, Lee MT, Yao HC, Hsiao PW, Ke FC, Hwang JJ. Crucial role of estrogen receptor-alpha interaction with transcription coregulators in follicle-stimulating hormone and transforming growth factor beta1 up-regulation of steroidogenesis in rat ovarian granulosa cells. Endocrinology. 2008;149:4658–68.PubMedCrossRefGoogle Scholar
  58. 58.
    Zheng X, Price CA, Tremblay Y, Lussier JG, Carriere PD. Role of transforming growth factor-beta1 in gene expression and activity of estradiol and progesterone-generating enzymes in FSH-stimulated bovine granulosa cells. Reproduction. 2008;136:447–57.PubMedCrossRefGoogle Scholar
  59. 59.
    Minegishi T, Tsuchiya M, Hirakawa T, Abe K, Inoue K, Mizutani T, et al. Expression of steroidogenic acute regulatory protein (StAR) in rat granulosa cells. Life Sci. 2000;67:1015–24.PubMedCrossRefGoogle Scholar
  60. 60.
    Ruiz-Cortes ZT, Martel-Kennes Y, Gevry NY, Downey BR, Palin MF, Murphy BD. Biphasic effects of leptin in porcine granulosa cells. Biol Reprod. 2003;68:789–96.PubMedCrossRefGoogle Scholar
  61. 61.
    Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, et al. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem. 1997;272:32656–62.PubMedCrossRefGoogle Scholar
  62. 62.
    Bogan RL, Niswender GD. Constitutive steroidogenesis in ovine large luteal cells may be mediated by tonically active protein kinase A. Biol Reprod. 2007;77:209–16.PubMedCrossRefGoogle Scholar
  63. 63.
    Bose HS, Lingappa VR, Miller WL. The steroidogenic acute regulatory protein, StAR, works only at the outer mitochondrial membrane. Endocr Res. 2002;28:295–308.PubMedCrossRefGoogle Scholar
  64. 64.
    Stocco DM, Sodeman TC. The 30-kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J Biol Chem. 1991;266:19731–8.PubMedGoogle Scholar
  65. 65.
    Sugawara T, Kiriakidou M, McAllister JM, Kallen CB, Strauss III JF. Multiple steroidogenic factor 1 binding elements in the human steroidogenic acute regulatory protein gene 5′-flanking region are required for maximal promoter activity and cyclic AMP responsiveness. Biochemistry. 1997;36:7249–55.PubMedCrossRefGoogle Scholar
  66. 66.
    Yivgi-Ohana N, Sher N, Melamed-Book N, Eimerl S, Koler M, Manna PR, et al. Transcription of steroidogenic acute regulatory protein (STAR) in the rodent ovary and placenta: alternative modes of cyclic adenosine 3′,5′-monophosphate dependent and independent regulation. Endocrinology. 2009;150:977–89.PubMedCrossRefGoogle Scholar
  67. 67.
    Mizutani T, Yazawa T, Ju Y, Imamichi Y, Uesaka M, Inaoka Y, et al. Identification of a novel distal control region upstream of the human steroidogenic acute regulatory protein (star) gene that participates in SF-1 dependent chromatin architecture. J Biol Chem. 2010;285:28240–51.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Roy L, McDonald CA, Jiang C, Maroni D, Zeleznik AJ, Wyatt TA, et al. Convergence of 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A and glycogen synthase kinase-3beta/beta-catenin signaling in corpus luteum progesterone synthesis. Endocrinology. 2009;150:5036–45.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li M, Xue K, Ling J, Diao FY, Cui YG, Liu JY. The orphan nuclear receptor NR4A1 regulates transcription of key steroidogenic enzymes in ovarian theca cells. Mol Cell Endocrinol. 2010;319:39–46.PubMedCrossRefGoogle Scholar
  70. 70.
    LaVoie HA. The role of GATA in mammalian reproduction. Exp Biol Med (Maywood). 2003;228:1282–90.Google Scholar
  71. 71.
    Gillio-Meina C, Hui YY, LaVoie HA. GATA-4 and GATA-6 transcription factors: expression, immunohistochemical localization, and possible function in the porcine ovary. Biol Reprod. 2003;68:412–22.PubMedCrossRefGoogle Scholar
  72. 72.
    LaVoie HA, Singh D, Hui YY. Concerted regulation of the porcine steroidogenic acute regulatory protein gene promoter activity by follicle-stimulating hormone and insulin-like growth factor I in granulosa cells involves GATA-4 and CCAAT/enhancer binding protein beta. Endocrinology. 2004;145:3122–34.PubMedCrossRefGoogle Scholar
  73. 73.
    Silverman E, Eimerl S, Orly J. CCAAT enhancer-binding protein beta and GATA-4 binding regions within the promoter of the steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. J Biol Chem. 1999;274:17987–96.PubMedCrossRefGoogle Scholar
  74. 74.
    LaVoie HA, McCoy GL, Blake CA. Expression of the GATA-4 and GATA-6 transcription factors in the fetal rat gonad and in the ovary during postnatal development and pregnancy. Mol Cell Endocrinol. 2004;227:31–40.PubMedCrossRefGoogle Scholar
  75. 75.
    Heikinheimo M, Ermolaeva M, Bielinska M, Rahman NA, Narita N, Huhtaniemi IT, et al. Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary. Endocrinology. 1997;138:3505–14.PubMedGoogle Scholar
  76. 76.
    Hui YY, LaVoie HA. GATA4 reduction enhances cyclic AMP-stimulated steroidogenic acute regulatory protein mRNA and progesterone production in luteinized porcine granulosa cells. Endocrinology. 2008;149:5557–67.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hiroi H, Christenson LK, Chang L, Sammel MD, Berger SL, Strauss III JF. Temporal and spatial changes in transcription factor binding and histone modifications at the steroidogenic acute regulatory protein (StAR) locus associated with StAR transcription. Mol Endocrinol. 2004;18:791–806.PubMedCrossRefGoogle Scholar
  78. 78.
    Fan HY, Liu Z, Johnson PF, Richards JS. CCAAT/enhancer-binding proteins (C/EBP)-{alpha} and -{beta} are essential for ovulation, luteinization, and the expression of key target genes. Mol Endocrinol. 2011;25:253–68.PubMedCrossRefGoogle Scholar
  79. 79.
    Pisarska MD, Bae J, Klein C, Hsueh AJ. Forkhead l2 is expressed in the ovary and represses the promoter activity of the steroidogenic acute regulatory gene. Endocrinology. 2004;145:3424–33.PubMedCrossRefGoogle Scholar
  80. 80.
    Natesampillai S, Kerkvliet J, Leung PC, Veldhuis JD. Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells. Am J Physiol Endocrinol Metab. 2008;294:E385–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Voss AK, Fortune JE. Levels of messenger ribonucleic acid for cholesterol side-chain cleavage cytochrome P-450 and 3 beta-hydroxysteroid dehydrogenase in bovine preovulatory follicles decrease after the luteinizing hormone surge. Endocrinology. 1993;132:888–94.PubMedGoogle Scholar
  82. 82.
    Goldring NB, Durica JM, Lifka J, Hedin L, Ratoosh SL, Miller WL, et al. Cholesterol side-chain cleavage P450 messenger ribonucleic acid: evidence for hormonal regulation in rat ovarian follicles and constitutive expression in corpora lutea. Endocrinology. 1987;120:1942–50.PubMedCrossRefGoogle Scholar
  83. 83.
    Winters TA, Hanten JA, Veldhuis JD. In situ amplification of the cytochrome P-450 cholesterol side-chain cleavage enzyme mRNA in single porcine granulosa cells by IGF-1 and FSH acting alone or in concert. Endocrine. 1998;9:57–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Mamluk R, Greber Y, Meidan R. Hormonal regulation of messenger ribonucleic acid expression for steroidogenic factor-1, steroidogenic acute regulatory protein, and cytochrome P450 side-chain cleavage in bovine luteal cells. Biol Reprod. 1999;60:628–34.PubMedCrossRefGoogle Scholar
  85. 85.
    Pescador N, Stocco DM, Murphy BD. Growth factor modulation of steroidogenic acute regulatory protein and luteinization in the pig ovary. Biol Reprod. 1999;60:1453–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Rusovici R, Hui YY, LaVoie HA. Epidermal growth factor-mediated inhibition of follicle-stimulating hormone-stimulated StAR gene expression in porcine granulosa cells is associated with reduced histone H3 acetylation. Biol Reprod. 2005;72:862–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Swan CL, Agostini MC, Bartlewski PM, Feyles V, Urban RJ, Chedrese PJ. Effects of progestins on progesterone synthesis in a stable porcine granulosa cell line: control of transcriptional activity of the cytochrome p450 side-chain cleavage gene. Biol Reprod. 2002;66:959–65.PubMedCrossRefGoogle Scholar
  88. 88.
    Stocco C, Callegari E, Gibori G. Opposite effect of prolactin and prostaglandin F(2 alpha) on the expression of luteal genes as revealed by rat cDNA expression array. Endocrinology. 2001;142:4158–61.PubMedGoogle Scholar
  89. 89.
    Veldhuis JD, Garmey JC, Urban RJ, Demers LM, Aggarwal BB. Ovarian actions of tumor necrosis factor-alpha (TNF alpha): pleiotropic effects of TNF alpha on differentiated functions of untransformed swine granulosa cells. Endocrinology. 1991;129:641–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem. 2001;276:11387–92.PubMedCrossRefGoogle Scholar
  91. 91.
    Li XM, Juorio AV, Murphy BD. Prostaglandins alter the abundance of messenger ribonucleic acid for steroidogenic enzymes in cultured porcine granulosa cells. Biol Reprod. 1993;48:1360–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Tian XC, Berndtson AK, Fortune JE. Changes in levels of messenger ribonucleic acid for cytochrome P450 side-chain cleavage and 3 beta-hydroxysteroid dehydrogenase during prostaglandin F2 alpha-induced luteolysis in cattle. Biol Reprod. 1994;50:349–56.PubMedCrossRefGoogle Scholar
  93. 93.
    Chien Y, Cheng WC, Wu MR, Jiang ST, Shen CK, Chung BC. Misregulated progesterone secretion and impaired pregnancy in Cyp11a1 transgenic mice. Biol Reprod. 2013;89:91.PubMedCrossRefGoogle Scholar
  94. 94.
    Liu Z, Simpson ER. Molecular mechanism for cooperation between Sp1 and steroidogenic factor-1 (SF-1) to regulate bovine CYP11A gene expression. Mol Cell Endocrinol. 1999;153:183–96.PubMedCrossRefGoogle Scholar
  95. 95.
    Liu Z, Simpson ER. Steroidogenic factor 1 (SF-1) and SP1 are required for regulation of bovine CYP11A gene expression in bovine luteal cells and adrenal Y1 cells. Mol Endocrinol. 1997;11:127–37.PubMedCrossRefGoogle Scholar
  96. 96.
    Clemens JW, Lala DS, Parker KL, Richards JS. Steroidogenic factor-1 binding and transcriptional activity of the cholesterol side-chain cleavage promoter in rat granulosa cells. Endocrinology. 1994;134:1499–508.PubMedGoogle Scholar
  97. 97.
    Duggavathi R, Volle DH, Mataki C, Antal MC, Messaddeq N, Auwerx J, et al. Liver receptor homolog 1 is essential for ovulation. Genes Dev. 2008;22:1871–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sher N, Yivgi-Ohana N, Orly J. Transcriptional regulation of the cholesterol side chain cleavage cytochrome P450 gene (CYP11A1) revisited: binding of GATA, cyclic adenosine 3′,5′-monophosphate response element-binding protein and activating protein (AP)-1 proteins to a distal novel cluster of cis-regulatory elements potentiates AP-2 and steroidogenic factor-1-dependent gene expression in the rodent placenta and ovary. Mol Endocrinol. 2007;21:948–62.PubMedCrossRefGoogle Scholar
  99. 99.
    Urban RJ, Shupnik MA, Bodenburg YH. Insulin-like growth factor-I increases expression of the porcine P-450 cholesterol side chain cleavage gene through a GC-rich domain. J Biol Chem. 1994;269:25761–9.PubMedGoogle Scholar
  100. 100.
    Liu Z, Rudd MD, Hernandez-Gonzalez I, Gonzalez-Robayna I, Fan HY, Zeleznik AJ, et al. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol Endocrinol. 2009;23:649–61.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rasmussen MK, Ekstrand B, Zamaratskaia G. Regulation of 3beta-hydroxysteroid dehydrogenase/delta(5)-delta(4) isomerase: a review. Int J Mol Sci. 2013;14:17926–42.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Pelletier G, Li S, Luu-The V, Tremblay Y, Belanger A, Labrie F. Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450(scc), 3 beta-hydroxysteroid dehydrogenase and cytochrome P450(c17)) in rat adrenal cortex and gonads. J Endocrinol. 2001;171:373–83.PubMedCrossRefGoogle Scholar
  103. 103.
    Havelock JC, Smith AL, Seely JB, Dooley CA, Rodgers RJ, Rainey WE, et al. The NGFI-B family of transcription factors regulates expression of 3beta-hydroxysteroid dehydrogenase type 2 in the human ovary. Mol Hum Reprod. 2005;11:79–85.PubMedCrossRefGoogle Scholar
  104. 104.
    Peng N, Kim JW, Rainey WE, Carr BR, Attia GR. The role of the orphan nuclear receptor, liver receptor homologue-1, in the regulation of human corpus luteum 3beta-hydroxysteroid dehydrogenase type II. J Clin Endocrinol Metab. 2003;88:6020–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Martin LJ, Taniguchi H, Robert NM, Simard J, Tremblay JJ, Viger RS. GATA factors and the nuclear receptors, steroidogenic factor 1/liver receptor homolog 1, are key mutual partners in the regulation of the human 3beta-hydroxysteroid dehydrogenase type 2 promoter. Mol Endocrinol. 2005;19:2358–70.PubMedCrossRefGoogle Scholar
  106. 106.
    Hickey GJ, Krasnow JS, Beattie WG, Richards JS. Aromatase cytochrome P450 in rat ovarian granulosa cells before and after luteinization: adenosine 3′,5′-monophosphate-dependent and independent regulation. Cloning and sequencing of rat aromatase cDNA and 5′ genomic DNA. Mol Endocrinol. 1990;4:3–12.PubMedCrossRefGoogle Scholar
  107. 107.
    Vanselow J, Spitschak M, Nimz M, Furbass R. DNA methylation is not involved in preovulatory down-regulation of CYP11A1, HSD3B1, and CYP19A1 in bovine follicles but may have a role in permanent silencing of CYP19A1 in large granulosa lutein cells. Biol Reprod. 2010;82:289–98.PubMedCrossRefGoogle Scholar
  108. 108.
    Sasano H, Okamoto M, Mason JI, Simpson ER, Mendelson CR, Sasano N, et al. Immunolocalization of aromatase, 17 alpha-hydroxylase and side- chain-cleavage cytochromes P-450 in the human ovary. J Reprod Fertil. 1989;85:163–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Doody KJ, Lorence MC, Mason JI, Simpson ER. Expression of messenger ribonucleic acid species encoding steroidogenic enzymes in human follicles and corpora lutea throughout the menstrual cycle. J Clin Endocrinol Metab. 1990;70:1041–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Fitzpatrick SL, Richards JS. Identification of a cyclic adenosine 3′,5′-monophosphate-response element in the rat aromatase promoter that is required for transcriptional activation in rat granulosa cells and R2C leydig cells. Mol Endocrinol. 1994;8:1309–19.PubMedGoogle Scholar
  111. 111.
    Stocco C, Kwintkiewicz J, Cai Z. Identification of regulatory elements in the Cyp19 proximal promoter in rat luteal cells. J Mol Endocrinol. 2007;39:211–21.PubMedCrossRefGoogle Scholar
  112. 112.
    Michael MD, Michael LF, Simpson ER. A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol Cell Endocrinol. 1997;134:147–56.PubMedCrossRefGoogle Scholar
  113. 113.
    McAllister JM, Mason JI, Byrd W, Trant JM, Waterman MR, Simpson ER. Proliferating human granulosa-lutein cells in long term monolayer culture: expression of aromatase, cholesterol side-chain cleavage, and 3 beta-hydroxysteroid dehydrogenase. J Clin Endo Metab. 1990;71:26–33.CrossRefGoogle Scholar
  114. 114.
    Tapanainen J, McCamant S, Orava M, Ronnberg L, Martkainen H, Vihko R, et al. Regulation of steroid and steroid sulfate production and aromatase activity in cultured human granulosa-luteal cells. J Steroid Biochem Mol Biol. 1991;39:19–25.PubMedCrossRefGoogle Scholar
  115. 115.
    Sahmi F, Nicola ES, Zamberlam GO, Goncalves PD, Vanselow J, Price CA. Factors regulating the bovine, caprine, rat and human ovarian aromatase promoters in a bovine granulosa cell model. Gen Comp Endocrinol. 2014;200:10–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Nimz M, Spitschak M, Furbass R, Vanselow J. The pre-ovulatory luteinizing hormone surge is followed by down-regulation of CYP19A1, HSD3B1, and CYP17A1 and chromatin condensation of the corresponding promoters in bovine follicles. Mol Reprod Dev. 2010;77:1040–8.PubMedCrossRefGoogle Scholar
  117. 117.
    McLean MP, Nelson SE, Billheimer JT, Gibori G. Differential capacity for cholesterol transport and processing in large and small rat luteal cells. Endocrinology. 1992;131:2203–12.PubMedGoogle Scholar
  118. 118.
    Jackson JA, Albrecht ED. The development of placental androstenedione and testosterone production and their utilization by the ovary for aromatization to estrogen during rat pregnancy. Biol Reprod. 1985;33:451–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Saloniemi T, Jokela H, Strauss L, Pakarinen P, Poutanen M. The diversity of sex steroid action: novel functions of hydroxysteroid (17beta) dehydrogenases as revealed by genetically modified mouse models. J Endocrinol. 2012;212:27–40.PubMedCrossRefGoogle Scholar
  120. 120.
    Zhang Y, Word RA, Fesmire S, Carr BR, Rainey WE. Human ovarian expression of 17 beta-hydroxysteroid dehydrogenase types 1, 2, and 3. J Clin Endocrinol Metab. 1996;81:3594–8.PubMedGoogle Scholar
  121. 121.
    Blomquist CH, Bealka DG, Hensleigh HC, Tagatz GE. A comparison of 17 beta-hydroxysteroid oxidoreductase type 1 and type 2 activity of cytosol and microsomes from human term placenta, ovarian stroma and granulosa-luteal cells. J Steroid Biochem Mol Biol. 1994;49:183–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Hakkarainen J, Jokela H, Pakarinen P, Heikela H, Katkanaho L, Vandenput L, et al. Hydroxysteroid (17beta)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production. FASEB J. 2015;29(9):3806–16.CrossRefGoogle Scholar
  123. 123.
    Parmer TG, McLean MP, Duan WR, Nelson SE, Albarracin CT, Khan I, et al. Hormonal and immunological characterization of the 32 kilodalton ovarian-specific protein. Endocrinology. 1992;131:2213–21.PubMedGoogle Scholar
  124. 124.
    Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28:117–49.PubMedCrossRefGoogle Scholar
  125. 125.
    Risk M, Shehu A, Mao J, Stocco CO, Goldsmith LT, Bowen-Shauver JM, et al. Cloning and characterization of a 5′ regulatory region of the prolactin receptor-associated protein/17{beta}hydroxysteroid dehydrogenase 7 gene. Endocrinology. 2005;146:2807–16.PubMedCrossRefGoogle Scholar
  126. 126.
    Shehu A, Mao J, Gibori GB, Halperin J, Le J, Devi YS, et al. Prolactin receptor-associated protein/17beta-hydroxysteroid dehydrogenase type 7 gene (Hsd17b7) plays a crucial role in embryonic development and fetal survival. Mol Endocrinol. 2008;22:2268–77.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Jokela H, Rantakari P, Lamminen T, Strauss L, Ola R, Mutka AL, et al. Hydroxysteroid (17beta) dehydrogenase 7 activity is essential for fetal de novo cholesterol synthesis and for neuroectodermal survival and cardiovascular differentiation in early mouse embryos. Endocrinology. 2010;151:1884–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaUSA

Personalised recommendations