The Corpus Luteum and Women’s Health

  • W. Colin DuncanEmail author


The corpus luteum of women is remarkable. The dominant follicle shows high levels of cellular proliferation, and its transition into the corpus luteum involves intense angiogenesis, higher than that seen in the most aggressive solid tumors. The corpus luteum, however, does not undergo malignant change. Its formation and resolution involve acute inflammatory responses and yet these processes are completed with no evidence of scarring. It is the most active endocrine gland in the body with a huge capacity for steroid synthesis, making up to 40 mg progesterone each day, and there are no disorders of clinical function. It has an essential role in human reproduction and the establishment of pregnancy, and yet we still do not fully understand how it works at a molecular level. The corpus luteum is fundamental to women’s health but research into the human corpus luteum is decreasing. However, although increased molecular understanding of the corpus luteum in women may facilitate the development of novel contraceptive paradigms and strategies to reduce the incidence and impact of ovarian hyperstimulation syndrome in assisted conception, it is likely that understanding the corpus luteum will provide generic insights into processes that affect the health of men and women throughout and beyond their reproductive years.


Corpus luteum Human Luteinizing hormone Luteinized granulosa cells Angiogenesis Vascular endothelial growth factor Human chorionic gonadotropin Ovarian hyperstimulation syndrome Inadequate Progesterone Luteinized unruptured follicle 


  1. 1.
    Duncan WC. The human corpus luteum: remodelling during luteolysis and maternal recognition of pregnancy. Rev Reprod. 2000;5:12–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Devoto L, Fuentes A, Kohen P, Céspedes P, Palomino A, Pommer R, Muñoz A, Strauss III JF. The human corpus luteum: life cycle and function in natural cycles. Fertil Steril. 2009;92:1067–79.CrossRefPubMedGoogle Scholar
  3. 3.
    Csapo AI, Pulkkinen M. Indispensability of the human corpus luteum in the maintenance of early pregnancy. Luteectomy evidence. Obstet Gynecol Surv. 1978;33:69–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Dunlop CE, Anderson RA. The regulation and assessment of follicular growth. Scand J Clin Lab Invest Suppl. 2014;244:13–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Donnez J, Squifflet J, Jadoul P, Demylle D, Cheron AC, Van Langendonckt A, Dolmans MM. Pregnancy and live birth after autotransplantation of frozen-thawed ovarian tissue in a patient with metastatic disease undergoing chemotherapy and hematopoietic stem cell transplantation. Fertil Steril. 1787;2011(95):e1–4.Google Scholar
  6. 6.
    Jabbour HN, Kelly RW, Fraser HM, Critchley HO. Endocrine regulation of menstruation. Endocr Rev. 2006;27:17–46.CrossRefPubMedGoogle Scholar
  7. 7.
    Groome NP, Illingworth PJ, O’Brien M, Pai R, Rodger FE, Mather JP, McNeilly AS. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab. 1996;81:1401–5.PubMedGoogle Scholar
  8. 8.
    Stouffer RL, Xu F, Duffy DM. Molecular control of ovulation and luteinization in the primate follicle. Front Biosci. 2007;12:297–307.CrossRefPubMedGoogle Scholar
  9. 9.
    Richards JS, Russell DL, Ochsner S, Espey LL. Ovulation: new dimensions and new regulators of the inflammatory-like response. Ann Rev Physiol. 2002;64:69–92.CrossRefGoogle Scholar
  10. 10.
    Brezinka C. 3D ultrasound imaging of the human corpus luteum. Reprod Biol. 2014;14:110–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Parsons AK. Imaging the human corpus luteum. J Ultrasound Med. 2001;20:811–9.PubMedGoogle Scholar
  12. 12.
    Jokubkiene L, Sladkevicius P, Rovas L, Valentin L. Assessment of changes in volume and vascularity of the ovaries during the normal menstrual cycle using three dimensional power Doppler ultrasound. Hum Reprod. 2006;21:2661–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Tamura H, Takasaki A, Taniguchi K, Matsuoka A, Shimamura K, Sugino N. Changes in blood-flow impedance of the human corpus luteum throughout the luteal phase and during early pregnancy. Fertil Steril. 2008;90:2334–9.Google Scholar
  14. 14.
    Zeleznik AJ. In vivo responses of the primate corpus luteum to luteinizing hormone and chorionic gonadotropin. Proc Natl Acad Sci USA. 1998;95:11002–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Duncan WC, Myers M, Dickinson RE, van den Driesche S, Fraser HM. Luteal development and luteolysis in the primate corpus luteum. Anim Reprod. 2009;6:34–46.Google Scholar
  16. 16.
    Sivalingam VN, Duncan WC, Kirk E, Shephard LA, Horne AW. Diagnosis and management of ectopic pregnancy. J Fam Plann Reprod Health Care. 2011;37:231–40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Järvelä IY, Ruokonen A, Tekay A. Effect of rising hCG levels on the human corpus luteum during early pregnancy. Hum Reprod. 2008;23:2775–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Tay PYS, Lenton EA. The optimum time for exogenous human chorionic gonadotropin to rescue the corpus luteum. J Assisted Reprod Genet. 1999;16:495–9.CrossRefGoogle Scholar
  19. 19.
    Illingworth PJ, Reddi K, Smith K, Baird DT. Pharmacological ‘rescue’ of the corpus luteum results in increased inhibin production. Clin Endocrinol (Oxf). 1990;33:323–32.Google Scholar
  20. 20.
    Casper RF. Basic understanding of gonadotropin-releasing hormone-agonist triggering. Fertil Steril. 2015;103:867–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Lunn SF, Fraser HM, Mason HD. Structure of the corpus luteum in the ovulatory polycystic ovary. Hum Reprod. 2002;17:111–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Nishimori K, Dunkel L, Hsueh AJ, Yamoto M, Nakano R. Expression of luteinizing hormone and chorionic gonadotropin receptor messenger ribonucleic acid in human corpora lutea during menstrual cycle and pregnancy. J Clin Endocrinol Metab. 1995;80:1444–8.PubMedGoogle Scholar
  23. 23.
    Miceli F, Minici F, Garcia Pardo M, Navarra P, Proto C, Mancuso S, Lanzone A, Apa R. Endothelins enhance prostaglandin (PGE(2) and PGF(2alpha)) biosynthesis and release by human luteal cells: evidence of a new paracrine/autocrine regulation of luteal function. J Clin Endocrinol Metab. 2001;86:811–7.PubMedGoogle Scholar
  24. 24.
    Auletta FJ, Flint AP. Mechanisms controlling corpus luteum function in sheep, cows, nonhuman primates, and women especially in relation to the time of luteolysis. Endocr Rev. 1988;9:88–105.CrossRefPubMedGoogle Scholar
  25. 25.
    Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28:117–49.CrossRefPubMedGoogle Scholar
  26. 26.
    Peegel H, Randolph Jr J, Midgely AR, Menon KMJ. In situ hybridization of luteinizing hormone/human chorionic gonadotropin receptor messenger ribonucleic acid during hormone-induced down-regulation and the subsequent recovery in rat corpus luteum. Endocrinology. 1994;135:1044–51.PubMedGoogle Scholar
  27. 27.
    Duncan WC, McNeilly AS, Fraser HM, Illingworth PJ. Luteinizing hormone receptor in the human corpus luteum: lack of down regulation during maternal recognition of pregnancy. Hum Reprod. 1996;11:2291–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Fraser HM, Duncan WC. Regulation and manipulation of angiogenesis in the ovary and endometrium. Reprod Fertil Dev. 2009;21:277–392.CrossRefGoogle Scholar
  29. 29.
    Stouffer RL, Bishop CV, Bogan RL, Xu F, Hennebold JD. Endocrine and local control of the primate corpus luteum. Reprod Biol. 2013;13:259–71.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Myers M, Gay E, McNeilly AS, Fraser HM, Duncan WC. In vitro evidence suggests activin-A may promote tissue remodeling associated with human luteolysis. Endocrinology. 2007;148:3730–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Chin KV, Seifer DB, Feng B, Lin Y, Shih WC. DNA microarray analysis of the expression profiles of luteinized granulosa cells as a function of ovarian reserve. Fertil Steril. 2002;77:1214–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Duncan WC, Gay E, Maybin JA. The effect of luteal rescue with human chorionic gonadotrophin (hCG) on human luteal-cell progesterone receptors. Reproduction. 2005;130:83–93.CrossRefPubMedGoogle Scholar
  33. 33.
    Rodewald M, Herr D, Duncan WC, Fraser HM, Hack G, Konrad R, Gagsteiger F, Kreienberh R, Wulff C. Molecular mechanisms of ovarian hyperstimulation syndrone: paracrine reduction of endothelial Claudin 5 by hCG in vitro is associated with increased endothelial permeability. Hum Reprod. 2009;24:1191–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Duncan WC, Hillier SG, Gay E, Bell J, Fraser HM. Connective tissue growth factor (CTGF) expression in the human corpus luteum: paracrine regulation by human chorionic gonadotropin (hCG). J Clin Endocrinol Metab. 2005;90:5366–76.CrossRefPubMedGoogle Scholar
  35. 35.
    Duncan WC, Illingworth PJ, Young FM, Fraser HM. Induced luteolysis in the primate: rapid loss of luteinising hormone (LH) receptors. Hum Reprod. 1998;13:2532–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Hutchison JS, Nelson PB, Zeleznik AJ. Effects of different gonadotropin pulse frequencies on corpus luteum function during the menstrual cycle of rhesus monkeys. Endocrinology. 1986;119:1964–71.CrossRefPubMedGoogle Scholar
  37. 37.
    Duncan WC, Cowen GM, Illingworth PJ. Steroidogenic enzyme expression in human corpora lutea in the absence and presence of exogenous human chorionic gonadotrophin. Mol Hum Reprod. 1999;5:291–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Duncan WC, Rodger FE, Illingworth PJ. The human corpus luteum: reduction in macrophages during maternal recognition of pregnancy. Hum Reprod. 1998;13:2435–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Nio-Kobayashi J, Trendell J, Giakoumelou S, Boswell L, Nicol L, Kudo M, Sakuragi N, Iwanaga T, Duncan WC. Bone morphogenetic proteins are mediators of luteolysis in the human corpus luteum. Endocrinology. 2015;156:1494–503.CrossRefPubMedGoogle Scholar
  40. 40.
    Nio-Kobayashi J, Boswell L, Amano M, Iwanaga T, Duncan WC. The loss of luteal progesterone production in women is associated with a galectin switch via α2,6-sialylation of glycoconjugates. J Clin Endocrinol Metab. 2014;99:4616–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Duncan WC, McNeilly AS, Illingworth PJ. The effect of luteal ‘rescue’ on the expression and localization of matrix metalloproteinases and their tissue inhibitors in the human corpus luteum. J Clin Endocrinol Metab. 1998;83:2470–8.PubMedGoogle Scholar
  42. 42.
    Wulff C, Wilson H, Largue P, Duncan WC, Armstrong DG, Fraser HM. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, Tie-2, and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab. 2000;85:4302–9.PubMedGoogle Scholar
  43. 43.
    Fraser HM, Lunn SF. Regulation and manipulation of angiogenesis in the primate corpus luteum. Reproduction. 2001;121:355–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Bishop CV, Molskness TA, Xu F, Belcik JT, Lindner JR, Slayden OD, Stouffer RL. Quantification of dynamic changes to blood volume and vascular flow in the primate corpus luteum during the menstrual cycle. J Med Primatol. 2014;43:445–54.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    van den Driesche S, Myers M, Gay E, Thong KJ, Duncan WC. Human chorionic gonadotrophin up-regulates hypoxia inducible factor-1 alpha in luteinised granulosa cells: implications for the hormonal regulation of vascular endothelial growth factor A in the human corpus luteum. Mol Hum Reprod. 2008;14:455–64.CrossRefPubMedGoogle Scholar
  46. 46.
    Fraser HM, Bell J, Wilson H, Taylor PD, Morgan K, Anderson RA, Duncan WC. Localization and quantification of cyclic changes in the expression of endocrine gland vascular endothelial growth factor in the human corpus luteum. J Clin Endocrinol Metab. 2005;90:427–34.CrossRefPubMedGoogle Scholar
  47. 47.
    Fraser HM, Wilson H, Wulff C, Rudge JS, Wiegand SJ. Administration of vascular endothelial growth factor Trap during the post-angiogenic period of the luteal phase causes rapid functional luteolysis and selective endothelial cell death in the marmoset. Reproduction. 2006;132:589–600.CrossRefPubMedGoogle Scholar
  48. 48.
    Wulff C, Dickson SE, Duncan WC, Fraser HM. Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Hum Reprod. 2001;16:2515–24.CrossRefPubMedGoogle Scholar
  49. 49.
    Herr D, Bekes I, Wulff C. Regulation of endothelial permeability in the corpus luteum: a review of the literature. Geburtshilfe Frauenheilkd. 2013;73:1107–11.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Groten T, Fraser HM, Duncan WC, Konrad R, Kreienberg R, Wulff C. Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after HCG treatment. Hum Reprod. 2006;21:3096–102.CrossRefPubMedGoogle Scholar
  51. 51.
    Rodewald M, Herr D, Fraser HM, Hack G, Kreienberg R, Wulff C. Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol Hum Reprod. 2007;13:781–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Macklon NS, Stouffer RL, Giudice LC, Fauser BC. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev. 2006;27:170–207.CrossRefPubMedGoogle Scholar
  53. 53.
    Sampaio M, Serra V, Miro F, Calatayud C, Castellvi RM, Pellicer A. Development of ovarian cysts during gonadotrophin-releasing hormone agonists (GnRHa) administration. Hum Reprod. 1991;6:194–7.PubMedGoogle Scholar
  54. 54.
    Urbancsek J, Witthaus E. Midluteal buserelin is superior to early follicular phase buserelin in combined gonadotropin-releasing hormone analog and gonadotropin stimulation in in vitro fertilization. Fertil Steril. 1996;65:966–71.CrossRefPubMedGoogle Scholar
  55. 55.
    Depalo R, Jayakrishan K, Garruti G, Totaro I, Panzarino M, Giorgino F, Selvaggi LE. GnRH agonist versus GnRH antagonist in in vitro fertilization and embryo transfer (IVF/ET). Reprod Biol Endocrinol. 2012;10:26.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fraser HM, Sandow J. Suppression of follicular maturation by infusion of a luteinizing hormone-releasing hormone agonist starting during the late luteal phase in the stumptailed macaque monkey. J Clin Endocrinol Metab. 1985;60:579–84.CrossRefPubMedGoogle Scholar
  57. 57.
    Murphy BD. Models of luteinization. Biol Reprod. 2000;63:2–11.CrossRefPubMedGoogle Scholar
  58. 58.
    Liu L, Kong N, Xia G, Zhang M. Molecular control of oocyte meiotic arrest and resumption. Reprod Fertil Dev. 2013;25:463–71.PubMedGoogle Scholar
  59. 59.
    Wang W, Zhang X-H, Wang W-H, Liu Y-L, Zhao L-H, Xue S-L, Yang K-H. The time interval between hCG priming and oocyte retrieval in ART program: a meta-analysis. J Assist Reprod Genet. 2011;28:901–10.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Priddy AR, Killick SR. Eicosanoids and ovulation. Prostaglandins Leukot Essent Fatty Acids. 1993;49:827–31.CrossRefPubMedGoogle Scholar
  61. 61.
    Micu MC, Micu R, Ostensen M. Luteinized unruptured follicle syndrome increased by inactive disease and selective cyclooxygenase 2 inhibitors in women with inflammatory arthropathies. Arthritis Care Res. 2011;63:1334–8Google Scholar
  62. 62.
    Duffy DM, Stouffer RL. Follicular administration of a cyclooxygenase inhibitor can prevent oocyte release without alteration of normal luteal function in rhesus monkeys. Hum Reprod. 2002;17:2825–31.CrossRefPubMedGoogle Scholar
  63. 63.
    Kasum M, Danolić D, Orešković S, Ježek D, Beketić-Orešković L, Pekez M. Thrombosis following ovarian hyperstimulation syndrome. Gynecol Endocrinol. 2014;30:764–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Smith V, Osianlis T, Vollenhoven B. Prevention of ovarian hyperstimulation syndrome: a review. Obstet Gynecol Int. 2015;2015:514159.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Fiedler K, Ezcurra D. Predicting and preventing ovarian hyperstimulation syndrome (OHSS): the need for individualized not standardized treatment. Reprod Biol Endocrinol. 2012;10:32.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Duncan WC, Nio-Kobayashi J. Targeting angiogenesis in the pathological ovary. Reprod Fertil Dev. 2013;25:362–71.CrossRefPubMedGoogle Scholar
  67. 67.
    Duncan WC. A guide to understanding polycystic ovary syndrome (PCOS). J Fam Plann Reprod Health Care. 2014;40:217–25.CrossRefPubMedGoogle Scholar
  68. 68.
    Palomba S, Falbo A, Carrillo L, Villani MT, Orio F, Russo T, Di Cello A, Cappiello F, Capasso S, Tolino A, Colao A, Mastrantonio P, La Sala GB, Zullo F, Cittadini E; METformin in High Responder Italian Group. Metformin reduces risk of ovarian hyperstimulation syndrome in patients with polycystic ovary syndrome during gonadotropin-stimulated in vitro fertilization cycles: a randomized, controlled trial. Fertil Steril. 2011;96:1384–90.e4.Google Scholar
  69. 69.
    Youssef MA, van Wely M, Hassan MA, Al-Inany HG, Mochtar M, Khattab S, van der Veen F. Can dopamine agonists reduce the incidence and severity of OHSS in IVF/ICSI treatment cycles? A systematic review and meta-analysis. Hum Reprod Update. 2010;16:459–66.CrossRefPubMedGoogle Scholar
  70. 70.
    Jayasena CN, Abbara A, Comninos AN, Nijher GM, Christopoulos G, Narayanaswamy S, Izzi-Engbeaya C, Sridharan M, Mason AJ, Warwick J, Ashby D, Ghatei MA, Bloom SR, Carby A, Trew GH, Dhillo WS. Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J Clin Invest. 2014;124:3667–77.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Djahanbakhch O, Swanton IA, Corrie JE, McNeilly AS. Prediction of ovulation by progesterone. Lancet. 1981;2:1164–5.CrossRefPubMedGoogle Scholar
  72. 72.
    Ecochard R, Duterque O, Leiva R, Bouchard T, Vigil P. Self-identification of the clinical fertile window and the ovulation period. Fertil Steril. 2015;103:1319–25.e3.Google Scholar
  73. 73.
    Haggerty CL, Ness RB, Kelsey S, Waterer GW. The impact of estrogen and progesterone on asthma. Ann Allergy Asthma Immunol. 2003;90:284–91.CrossRefPubMedGoogle Scholar
  74. 74.
    Brisken C. Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer. 2013;13:385–96.CrossRefPubMedGoogle Scholar
  75. 75.
    Imai A, Ichigo S, Matsunami K, Takagi H. Premenstrual syndrome: management and pathophysiology. Clin Exp Obstet Gynecol. 2015;42:123–8.PubMedGoogle Scholar
  76. 76.
    Shivapathasundram G, Kwik M, Chapman M. Luteal phase defect: part of the infertility zeitgeist or relic from the past? Hum Fertil. 2011;14:60–3.CrossRefGoogle Scholar
  77. 77.
    McNeilly AS, Howie PW, Houston MJ, Cook A, Boyle H. Fertility after childbirth: adequacy of post-partum luteal phases. Clin Endocrinol (Oxf). 1982;17:609–15.CrossRefGoogle Scholar
  78. 78.
    The ESHRE Capri Workshop Group. Anovulatory infertility. Hum Reprod. 1995;10:1549–53.CrossRefGoogle Scholar
  79. 79.
    Baerwalda R, Adams GP, Pierson RA. Form and function of the corpus luteum during the human menstrual cycle. Ultrasound Obstet Gynecol. 2005;25:498–507.CrossRefGoogle Scholar
  80. 80.
    Hamilton MP, Fleming R, Coutts JR, Macnaughton MC, Whitfield CR. Luteal cysts and unexplained infertility: biochemical and ultrasonic evaluation. Fertil Steril. 1990;54:32–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Perkins KY, Johnson JL, Kay HH. Simple ovarian cysts. Clinical features on a first-trimester ultrasound scan. J Reprod Med. 1997;42:440–4.PubMedGoogle Scholar
  82. 82.
    Vercellini P, Somigliana E, Vigano P, Abbiati A, Barbara G, Fedele L. ‘Blood on the tracks’ from corpora lutea to endometriomas. BJOG. 2009;116:366–71.CrossRefPubMedGoogle Scholar
  83. 83.
    Fiaschette V, Ricci A, Lia Scarano A, Liberto V, Citraro D, Arduini S, Sorrenti G, Simonette G. Haemoperitoneum from corpus luteal cyst rupture: a practical approach in the emergency room. Case Rep Emerg Med. 2014;2014:252657.Google Scholar
  84. 84.
    Arulpragasam K, Atkinson A, Epee-Bekima M. An unexpected presentation of haemoperitoneum in a pregnant women. Case Rep Obstet Gynecol. 2015;2015:169582.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Chetty M, Duncan WC. Investigation and management of recurrent miscarriage. Obstet Gynecol Reprod Med. 2015;25:31–6.CrossRefGoogle Scholar
  86. 86.
    Szekeres-Bartho J, Balasch J. Progestogen therapy for recurrent miscarriage. Hum Reprod Update. 2008;14:27–35.CrossRefPubMedGoogle Scholar
  87. 87.
    Coomarasamy A, Williams H, Truchanowicz E, Seed PT, Small R, Quenby S, Gupta P, Dawood F, Koot YE, Bender Atik R, Bloemenkamp KW, Brady R, Briley AL, Cavallaro R, Cheong YC, Chu JJ, Eapen A, Ewies A, Hoek A, Kaaijk EM, Koks CA, Li TC, MacLean M, Mol BW, Moore J, Ross JA, Sharpe L, Stewart J, Vaithilingam N, Farquharson RG, Kilby MD, Khalaf Y, Goddijn M, Regan L, Rai R. A randomized trial of progesterone in women with recurrent miscarriages. N Engl J Med. 2015;373:2141–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Dante G, Vaccaro V. Facchinetti F. Use of progesterone during early pregnancy. Facts Views Vis Obgyn. 2013;5:66–71.Google Scholar
  89. 89.
    Haas DM, Ramsey PS. Progestogen for preventing miscarriage. Cochrane Database Syst Rev. 2013;10, CD003511.Google Scholar
  90. 90.
    Carmichael SL, Shaw GM, Laurent C, Croughan MS, Olney RS, Lammer EJ. Maternal progestin intake and risk of hypospadias. Arch Pediatr Adolesc Med. 2005;159:957–62.CrossRefPubMedGoogle Scholar
  91. 91.
    Kutlusoy F, Guler I, Erdem M, Erdem A, Bozkurt N, Biberoglu EH, Biberoglu KO. Luteal phase support with estrogen in addition to progesterone increases pregnancy rates in in vitro fertilization cycles with poor response to gonadotropins. Gynecol Endocrinol. 2014;30:363–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Wang Y-C, Su H-Y, Liu J-Y, Chang F-W, Chen C-H. Maternal and female virilization caused by pregnancy luteomas. Fertil Steril. 2005;84:509.Google Scholar
  93. 93.
    Illingworth PJ, Johnstone FD, Steel J, Seth J. Luteoma of pregnancy: masculinisation of a female fetus prevented by placental aromatisation. Br J Obstet Gynaecol. 1992;99:1019–20.CrossRefPubMedGoogle Scholar
  94. 94.
    van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2015;7, CD009154.Google Scholar
  95. 95.
    Connell MT, Szatkowski JM, Terry N, DeCherney AH, Propst AM, Hill MJ. Timing luteal support in assisted reproductive technology: a systematic review. Fertil Steril. 2015;103:939–46.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Liu X-R, Mu H-Q, Shi Q, Xiao X-Q, Qi H-B. The optimal duration of progesterone supplementation in pregnant women after IVF/ICSI: a meta-analysis. Reprod Biol Endocrinol. 2012;10:107.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Russell R, Kingsland C, Alfirevic Z, Gazvani R. Duration of luteal support after IVF is important, so why is there no consistency in practice? The results of a dynamic survey of practice in the United Kingdom. Hum Fertil (Camb). 2015;18:43–7.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.MRC Centre for Reproductive HealthThe Queen’s Medical Research InstituteEdinburghUK

Personalised recommendations