Skip to main content

Corpus Luteum Regression and Early Pregnancy Maintenance in Pigs

  • Chapter
  • First Online:
The Life Cycle of the Corpus Luteum

Abstract

Development of the porcine corpus luteum (CL) requires the initial preovulatory LH surge and support of many biologically active agents including tonic secretion of LH, ovarian steroids, growth factors, and prostaglandins. A lack of embryo presence in the uterus leads to CL regression, characterized by disrupted progesterone production (functional luteolysis) and further degeneration of luteal and endothelial cells (structural luteolysis) triggered by prostaglandin F2α (PGF2α). The porcine CL expresses abundant levels of PGF2α receptors in the early and mid-luteal phase of the estrous cycle but remains insensitive to a single treatment of exogenous PGF2α until about day 12 of the estrous cycle. The nature of porcine CL resistance to PGF2α remains unknown, and the mechanism of luteolytic sensitivity acquisition involves infiltration of immune cells into the CL. Former theories of luteolysis inhibition and maternal recognition of pregnancy in the pig have proposed that possible mechanism for prevention of luteal regression is connected with a limited PGF2α supply to CL, evoked by its sequestering in the uterus. Later studies besides the increased synthesis of prostaglandin E2 (PGE2) by the conceptus and endometrium revealed simultaneously decreased expression of PGF2α synthesis enzymes. This chapter summarizes available knowledge on the porcine CL maintenance and regression and present our recent studies leading to a novel ‘two signal-switch’ hypothesis, based on the interplay of both PGF2α and PGE2 postreceptor signaling pathways. Several practical aspects of how to prolong and enhance CL function and improve pregnancy maintenance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alminana C, Heath PR, Wilikson S, Sanchez-Osorio J, Cuello C, Parrilla I, Gil MA, Vazguez JL, Vazguez JM, Roca J, Martinez EA, Fazeli A. Early developing pig embryos mediate their own environment in the maternal tract. PLoS One. 2012;7, e33625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bischof RJ, Brandon MR, Lee CS. Cellular immune responses in the pig uterus during pregnancy. J Reprod Immunol. 1995;29:161–78.

    Article  CAS  PubMed  Google Scholar 

  3. Robertson SA, Mau VJ, Tremellen KP, Seamark RF. Role of high molecular weight seminal vesicle proteins in eliciting the uterine inflammatory response to semen in mice. J Reprod Fertil. 1996;107:265–77.

    Article  CAS  PubMed  Google Scholar 

  4. Claus R. Physiological role of seminal components in the reproductive tract of the female pig. J Reprod Fertil Suppl. 1990;40:117–31.

    CAS  PubMed  Google Scholar 

  5. Lovell JW, Getty R. Fate of semen in the uterus of the sow: histologic study of endometrium during the 27 hours after natural service. Am J Vet Res. 1968;29:609–25.

    CAS  PubMed  Google Scholar 

  6. Rozeboom K, Troedsson MH, Crabo BG. Characterization of uterine leukocyte infiltration in gilts after artificial insemination. J Reprod Fertil. 1998;14:195–9.

    Article  Google Scholar 

  7. Bischof RJ, Lee CS, Brandon MR, Meeusen E. Inflammatory response in the pig uterus induced by seminal plasma. J Reprod Immunol. 1994;26:131–46.

    Article  CAS  PubMed  Google Scholar 

  8. Robertson SA. Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs. J Anim Sci. 2007;85E(suppl):E36–44.

    Google Scholar 

  9. Taylor U, Schuberth HJ, Rath D, Michelmann HW, Sauter-Louis C, Zerbe H. Influence of inseminate components on porcine leucocyte migration in vitro and in vivo after pre and post-ovulatory insemination. Reprod Domestic Anim. 2009;44:180–8.

    Article  CAS  Google Scholar 

  10. O’Leary S, Jasper MJ, Warnes GM, Armstrong DT, Robertson SA. Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig. Reproduction. 2004;128:237–47.

    Article  PubMed  CAS  Google Scholar 

  11. Kaczmarek MM, Krawczynski K, Blitek A, Kiewisz J, Schams D, Ziecik AJ. Seminal plasma affects prostaglandin synthesis in the porcine oviduct. Theriogenology. 2010;74:1207–20.

    Article  CAS  PubMed  Google Scholar 

  12. Kaczmarek MM, Krawczynski K, Filant J. Seminal plasma affects prostaglandin synthesis and angiogenesis in the porcine uterus. Biol Reprod. 2013;88:72.

    Article  PubMed  CAS  Google Scholar 

  13. Krawczynski K, Kaczmarek MM. Does seminal plasma affect angiogenesis in the porcine oviduct? Reprod Biol. 2012;12:347–54.

    Article  PubMed  Google Scholar 

  14. O’Leary S, Jasper MJ, Robertson SA, Armstrong DT. Seminal plasma regulates ovarian progesterone production, leukocyte recruitment and follicular cell responses in the pig. Reproduction. 2006;132:147–58.

    Article  PubMed  CAS  Google Scholar 

  15. Hunter RH, Poyser NL. Uterine secretion of prostaglandin F2a in anaesthetized pigs during the oestrous cycle and early pregnancy. Reprod Nutr Dev. 1982;22:1013–23.

    Article  CAS  PubMed  Google Scholar 

  16. Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA. Macrophages regulate corpus luteum development during embryo implantation in mice. J Clin Invest. 2013;123:3472–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waberski D, Dohring A, Ardon F, Ritter N, Zerbe H, Schuberth H-J, Hewicker-Trautwein M, Weitze KF, Hunter RHF. Physiological routes from intra-uterine seminal contents to advancement of ovulation. Acta Vet Scand. 2006;48:13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krzymowski T, Stefańczyk-Krzymowska S. The oestrous cycle and early pregnancy-a new concept of local endocrine regulation. Vet J. 2004;168:285–96.

    Google Scholar 

  19. Stefańczyk-Krzymowska S, Krzymowski T. Local adjustment of blood and lymph circulation in the hormonal regulation of reproduction in female pigs: facts, conclusions and suggestions for future research. Reprod Biol. 2002;2:115–32.

    PubMed  Google Scholar 

  20. Ziecik AJ, Wacławik A, Kaczmarek MM, Blitek A, Moza Jalali B, Andronowska A. Mechanisms for the establishment of pregnancy in the pig. Reprod Domest Anim. 2011;46(S3):31–41.

    Article  PubMed  Google Scholar 

  21. du Du Mesnil Buisson F, Leglise PC. Effet de l’hypophysectomie sue les corps jaunes de la truie. Resultatas preliminaires. C R Hebd Seanc Acad Sci Paris. 1963;257:261–3.

    Google Scholar 

  22. Tilton JE, Foxcroft GR, Ziecik AJ, Coombs SL, Williams GL. Time of the preovulatory LH surge in the gilts and sow relative to the onset of behavioral estrus. Theriogeneology. 1982;18:227–36.

    Article  CAS  Google Scholar 

  23. Bazer FW, Geisert RD, Thatcher WW, Roberts RM. The establishment and maintenance of pregnancy. In: Cole DJA, Foxcroft GR, editors. Control of pig reproduction. London: Butterworth; 1982. p. 227–53.

    Chapter  Google Scholar 

  24. Szafranska B, Ziecik A. Active and passive immunization against luteinizing hormone in pigs. Acta Physiol Hung. 1989;74:253–8.

    CAS  PubMed  Google Scholar 

  25. Przygrodzka E, Lopinska M, Ziecik AJ. Precision-cut luteal slices: a promising approach for studying luteal function in pigs. Reprod Biol. 2014;14:243–7.

    Article  PubMed  Google Scholar 

  26. Conley AJ, Ford SP. Direct luteotrophic effect of oestradiol-17β on pig corpora lutea. J Reprod Fertil. 1989;87:125–31.

    Article  CAS  PubMed  Google Scholar 

  27. Ford SP, Christenson LK. Direct effects of oestradiol-17β and prostaglandin E2 in protecting pig corpora lutea from a luteolytic dose of prostaglandin F2α. J Reprod Fertil. 1991;93:203–9.

    Article  CAS  PubMed  Google Scholar 

  28. Geisert RD, Zavy MT, Moffatt RJ, Blair RM, Yellin T. Embryonic steroids and the establishment of pregnancy in pigs. J Reprod Fertil. 1990;40:293–305.

    CAS  Google Scholar 

  29. Gadsby J, Rose L, Sriperumbudur R, Ge Z. The role of intra-luteal factors in the control of the porcine corpus luteum. In: Ashworth CJ, Kraeling RR, editors. Control of pig reproduction, vol VII, Reproduction. Supplement 62. UK: Nottingham University Press; 2006. p. 69–83.

    Google Scholar 

  30. Christenson LK, Farley DB, Anderson LH, Ford SP. Luteal maintenance during early pregnancy in the pig: role for prostaglandin E2. Prostaglandins. 1994;47:61–75.

    Article  CAS  PubMed  Google Scholar 

  31. Wuttke W, Spiess S, Knoke I, Pitzel L, Leonhardt S, Jarry H. Synergistic effects of prostaglandin F2alpha and tumor necrosis factor to induce luteolysis in the pig. Biol Reprod. 1998;58:1310–5.

    Article  CAS  PubMed  Google Scholar 

  32. Moeljono MP, Thatcher WW, Bazer FW, Frank M, Owens LJ, Wilcom CJ. A study of prostaglandin F2alpha as the luteolysin in swine: II. Characterization and comparison of prostaglandin F, estrogens and progestin concentrations in utero-ovarian vein plasma of nonpregnant and pregnant gilts. Prostaglandins. 1977;14:543–55.

    Article  CAS  PubMed  Google Scholar 

  33. Ziecik AJ, Kotwica G. Involvement of gonadotropins in induction of luteolysis in pigs. Reprod Biol. 2001;2001(1):33–50.

    Google Scholar 

  34. Carnahan KG, Prince BC, Mirando MA. Exogenous oxytocin stimulates uterine secretion of prostaglandin F2 alpha in cyclic and early pregnant swine. Biol Reprod. 1996;55:838–43.

    Article  CAS  PubMed  Google Scholar 

  35. Ludwig TE, Sun BC, Carnahan KG, Uzumcu M, Yelich JV, Geisert RD, Mirando MA. Endometrial responsiveness to oxytocin during diestrus and early pregnancy in pigs is not controlled solely by changes in oxytocin receptor population density. Biol Reprod. 1998;58:769–77.

    Article  CAS  PubMed  Google Scholar 

  36. Waclawik A, Blitek A, Ziecik AJ. Oxytocin and tumor necrosis factor α stimulate expression of prostaglandin E2 synthase and secretion of prostaglandin E2 by luminal epithelial cells of the porcine endometrium during early pregnancy. Reproduction. 2010;140:613–22.

    Article  CAS  PubMed  Google Scholar 

  37. Blitek A, Ziecik AJ. Role of tumour necrosis factor alpha in stimulation of prostaglandins F(2alpha) and E(2) release by cultured porcine endometrial cells. Reprod Domestic Anim. 2006;41:562–7.

    Article  CAS  Google Scholar 

  38. Blitek A, Mendrzycka AU, Bieganska MK, Waclawik A, Ziecik AJ. Effect of steroids on basal and LH-stimulated prostaglandins F(2alpha) and E(2) release and cyclooxygenase-2 expression in cultured porcine endometrial stromal cells. Reprod Biol. 2007;7:73–88.

    PubMed  Google Scholar 

  39. Whiteaker SS, Mirando MA, Becker WC, Hostetler CE. Detection of functional oxytocin receptors on endometrium of pigs. Biol Reprod. 1994;51:92–8.

    Article  CAS  PubMed  Google Scholar 

  40. Whiteaker SS, Mirando MA, Becker WC, Peters DN. Relationship between phosphoinositide hydrolysis and prostaglandin F2 alpha secretion in vitro from endometrium of cyclic pigs on day 15 postestrus. Domestic Anim Endocrinol. 1995;12:95–104.

    Article  CAS  Google Scholar 

  41. Kotwica G, Franczak A, Okrasa S, Kotwica J. Effect of an oxytocin antagonist on prostaglandin F2 alpha secretion and the course of luteolysis in sows. Acta Vet Hung. 1999;47:249–62.

    Article  CAS  PubMed  Google Scholar 

  42. Gadsby JE, Balapure AK, Britt JH, Fitz TA. Prostaglandin F2 alpha receptors on enzyme-dissociated pig luteal cells throughout the estrous cycle. Endocrinology. 1990;126:787–95.

    Article  CAS  PubMed  Google Scholar 

  43. Gadsby JE, Lovdal JA, Britt JH, Fitz TA. Prostaglandin F2 alpha receptor concentrations in corpora lutea of cycling, pregnant, and pseudopregnant pigs. Biol Reprod. 1993;49:604–8.

    Article  CAS  PubMed  Google Scholar 

  44. Diaz FJ, Crenshaw TD, Wiltbank MC. Prostaglandin F(2alpha) induces distinct physiological responses in porcine corpora lutea after acquisition of luteolytic capacity. Biol Reprod. 2000;63:1504–12.

    Article  CAS  PubMed  Google Scholar 

  45. Diaz FJ, Wiltbank MC. Acquisition of luteolytic capacity: changes in prostaglandin F2alpha regulation of steroid hormone receptors and estradiol biosynthesis in pig corpora lutea. Biol Reprod. 2004;70:1333–9.

    Article  CAS  PubMed  Google Scholar 

  46. Diaz FJ, Wiltbank MC. Acquisition of luteolytic capacity involves differential regulation by prostaglandin F2alpha of genes involved in progesterone biosynthesis in the porcine corpus luteum. Domestic Anim Endocrinol. 2005;28:172–89.

    Article  CAS  Google Scholar 

  47. Diaz FJ, Luo W, Wiltbank MC. Effect of decreasing intraluteal progesterone on sensitivity of the early porcine corpus luteum to the luteolytic actions of prostaglandin F2alpha. Biol Reprod. 2011;841:26–33.

    Article  CAS  Google Scholar 

  48. Diaz FJ, Luo W, Wiltbank MC. Prostaglandin F2a regulation of mRNA for activating protein 1 transcriptional factors in porcine corpora lutea (CL): lack of induction of JUN and JUND in CL without luteolytic capacity. Domestic Anim Endocrinol. 2013;44:98–108.

    Article  CAS  Google Scholar 

  49. Zorrilla LM, Irvin MS, Gadsby JE. Protein kinase C isoforms in the porcine corpus luteum: temporal and spatial expression patterns. Domestic Anim Endocrinol. 2009;36:173–85.

    Article  CAS  Google Scholar 

  50. Zorrilla LM, Sriperumbudur R, Gadsby JE. Endothelin-1, endothelin converting enzyme-1 and endothelin receptors in the porcine corpus luteum. Domestic Anim Endocrinol. 2010;38:75–85.

    Article  CAS  Google Scholar 

  51. Luo W, Diaz FJ, Wiltbank MC. Induction of mRNA for chemokines and chemokine receptors by prostaglandin F2a is dependent upon stage of the porcine corpus luteum and intraluteal progesterone. Endocrinology. 2011;152:2797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Przygrodzka E, Witek KJ, Kaczmarek MM, Andronowska A, Ziecik AJ. Expression of factors associated with apoptosis in the porcine 1 corpus luteum throughout the luteal phase of the estrous cycle and early pregnancy: their possible involvement in acquisition of luteolytic sensitivity. Theriogenology. 2015;83:535–45.

    Article  CAS  PubMed  Google Scholar 

  53. Przygrodzka E, Kaczmarek MM, Kaczyński P, Zięcik AJ. Steroid hormones, prostanoids and angiogenic systems during rescue of the corpus luteum in pigs. Reproduction. 2016;151:135–47.

    Article  CAS  PubMed  Google Scholar 

  54. Zorrilla LM, D’Annibale MA, Swing SE, Gadsby JE. Expression of genes associated with apoptosis in the porcine corpus luteum during the oestrous cycle. Reprod Domestic Anim. 2013;48:755–61.

    Article  CAS  Google Scholar 

  55. Hehnke KE, Christenson LK, Ford SP, Taylor M. Macrophage infiltration into to porcine corpus luteum during prostaglandin F-induced luteolysis. Biol Reprod. 1994;50:10–5.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Y, Burbach JA, Roby KF, Terranova PF, Brannian JD. Macrophages are the major source of tumor necrosis factor alpha in the porcine corpus luteum. Biol Reprod. 1998;59:1385–91.

    Article  CAS  PubMed  Google Scholar 

  57. Perry JS, Heap RB, Amoroso EC. Steroid hormone production by pig blastocysts. Nature (Lond). 1973;245:45–7.

    Article  CAS  Google Scholar 

  58. Garverick HA, Polge C, Flint AP. Oestradiol administration raises luteal LH receptor levels in intact and hysterectomized pigs. J Reprod Fertil. 1982;66:371–7.

    Article  CAS  PubMed  Google Scholar 

  59. Bazer FW, Thatcher WW. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2alpha by the uterine endometrium. Prostaglandins. 1977;14:397–400.

    Article  CAS  PubMed  Google Scholar 

  60. Waclawik A, Jabbour HN, Blitek A, Ziecik AJ. Estradiol-17-beta, prostaglandin E2 (PGE2) and the prostaglandin E2 receptor are involved in PGE2 positive feedback loop in the porcine endometrium. Endocrinology. 2009;150:3823–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Waclawik A, Ziecik AJ. Differential expression of prostaglandin synthesis enzymes in conceptus during periimplantation period and endometrial expression of carbonyl reductase/prostaglandin 9-ketoreductase in the pig. J Endocrinol. 2007;194:499–510.

    Google Scholar 

  62. Geisert RD, Brenner RM, Moffatt J, Harney JP, Yellin T, Bazer FW. Changes in oestrogen receptor protein, mRNA expression and localization in the endometrium of cyclic and pregnant gilts. Reprod Fertil Dev. 1993;5:247–60.

    Article  CAS  PubMed  Google Scholar 

  63. Kautz E, Gram A, Aslan S, Ay SS, Selçuk M, Kanca H, Koldaş E, Akal E, Karakaş K, Findik M, Boos A, Kowalewski MP. Expression of genes involved in the embryo-maternal interaction in the early-pregnant canine uterus. Reproduction. 2014;8:703–17.

    Article  CAS  Google Scholar 

  64. Heap RB, Flint APF, Hartman PE, Gadsby JE, Staples LD, Ackalnd N, Hamon N. Oestrogen production in early pregnancy. J Endocrinol Suppl. 1981;89:77P–94.

    Google Scholar 

  65. Frank M, Bazer FW, Thatcher WW, Wilcox CJ. A study of prostaglandin F2alpha as the luteolysin in swine: III effects of estradiol valerate on prostaglandin F, progestins, estrone and estradiol concentrations in the utero-ovarian vein of nonpregnant gilts. Prostaglandins. 1977;14:1183–96.

    Article  CAS  PubMed  Google Scholar 

  66. Krzymowski T, Czarnocki J, Koziorowski M, Stefańczyk-Krzymowska S. Counter current transfer of 3H-PGF in the mesometrium: a possible mechanism for prevention of luteal regression. Anim Reprod Sci. 1986;11:259–72.

    Article  CAS  Google Scholar 

  67. Waclawik A, Rivero-Muller A, Blitek A, Kaczmarek MM, Brokken LJ, Watanabe K, Rahman NA, Ziecik AJ. Molecular cloning and spatio-temporal expression of prostaglandin F synthase and microsomal prostaglandin E synthase-1 in porcine endometrium. Endocrinology. 2006;147:210–21.

    Article  CAS  PubMed  Google Scholar 

  68. Franczak A, Kotwica G, Kurowicka B, Oponowicz A, Wocławek-Potocka I, Petroff BK. Expression of enzymes of cyclooxygenase pathway and secretion of prostaglandin E2 and F2α by porcine myometrium during luteolysis and early pregnancy. Theriogenology. 2006;66:1049–56.

    Google Scholar 

  69. Davis DL, Blair RM. Studies of uterine secretions and products of primary cultures of endometrial cell in pigs. J Reprod Fertil Suppl. 1993;48:143–55.

    CAS  PubMed  Google Scholar 

  70. Akinlosotu BA, Diehl JR, Gimenez T. Sparing effects of intrauterine treatment with prostaglandin E2 on luteal function in cycling gilts. Prostaglandins. 1986;32:291–9.

    Article  CAS  PubMed  Google Scholar 

  71. Schneider TM, Tilton JE, Okrasa S, Mah J, Weigl RM, Williams GL. The effect of intrauterine infusions of prostaglandin E2 on luteal function in nonpregnant gilts. Theriogenology. 1983;20:509–20.

    Article  CAS  PubMed  Google Scholar 

  72. Okrasa S, Tilton JE, Weigl RM. Utero-ovarian venous concentrations of prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) following PGE2 intrauterine infusions. Prostaglandins. 1985;30:851–6.

    Article  CAS  PubMed  Google Scholar 

  73. Stefanczyk-Krzymowska S, Wasowska B, Chłopek J, Gilun P, Grzegorzewski W, Radomski M. Retrograde and local destination transfer of uterine prostaglandin E2 in early pregnant sow and its physiological consequences. Prostaglandins Other Lipid Mediat. 2006;81:71–9.

    Article  CAS  PubMed  Google Scholar 

  74. Engmann L, Losel R, Wehling M, Peluso JJ. Progesterone regulation of human granulose/luteal cell viability by an RU486-independent mechanism. J Clin Endocrinol Metab. 2006;91:4962–8.

    Article  CAS  PubMed  Google Scholar 

  75. Geisert RD, Yelich JV. Regulation of conceptus development and attachment in pigs. J Reprod Fertil Suppl. 1997;52:133–49.

    CAS  PubMed  Google Scholar 

  76. Waclawik A, Kaczmarek MM, Kowalczyk AE, Bogacki M, Ziecik AJ. Expression of prostaglandin synthesis pathway enzymes in the porcine corpus luteum during the oestrous cycle and early pregnancy. Theriogenology. 2008;70:145–52.

    Google Scholar 

  77. Spencer TE, Forde N, Dorniak P, Hansen TR, Romero JJ, Lonergan P. Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction. 2013;146:377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seo H, Choi Y, Shim J, Yoo I, Ka H. Prostaglandin transporters ABCC4 and SLCO2A1 in the uterine endometrium and conceptus during pregnancy in pigs. Biol Reprod. 2014;90:1–10.

    Article  CAS  Google Scholar 

  79. Wasielak M, Kaminska K, Bogacki M. Effect of the conceptus on uterine prostaglandin-F2α and prostaglandin-E2 release and synthesis during the periimplantation period in the pig. Reprod Fertil Dev. 2009;21:1–9.

    Article  CAS  Google Scholar 

  80. Wiepz GL, Wiltbank MC, Nett TM, Niswender GD, Sawyer HR. Receptors for prostaglandin F2 alpha and E2 in ovine corpora lutea during maternal recognition of pregnancy. Biol Reprod. 1992;47:984–91.

    Google Scholar 

  81. Davis JS, Rueda BR. The corpus luteum: an ovarian structure with maternal instincts and suicidal tendencies. Front Biosci. 2002;7:1949–78.

    Article  Google Scholar 

  82. Zannoni A, Bernardini C, Rada T, Ribeiro LA, Forni M, Bacci ML. Prostaglandin F2-alpha receptor (FPr) expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs). Reprod Biol Endocrinol. 2007;5:31.

    Google Scholar 

  83. Shirasuna K, Akabane Y, Beindorff N, Nagai K, Sasaki M, Shimizu T, Bollwein H, Meidan R, Miyamoto A. Expression of prostaglandin F2α (PGF2α) receptor and its isoforms in the bovine corpus luteum during the estrous cycle and PGF2α-induced luteolysis. Domestic Anim Endocrinol. 2012;43:227–38.

    Google Scholar 

  84. Zalman Y, Klipper E, Farberov S, Mondal M, Wee G, Folger JK, Smith GW, Meidan R. Regulation of angiogenesis-related prostaglandin F2alpha-induced genes in the bovine corpus luteum. Biol Reprod. 2012;86:1–10.

    Article  CAS  Google Scholar 

  85. Waclawik A. Novel insights into the mechanisms of pregnancy establishment: regulation of prostaglandin synthesis and signaling in the pig. Reproduction. 2011;142:389–99.

    Article  CAS  PubMed  Google Scholar 

  86. Lee JH, McCracken JA, Stanley JA, Nithy TK, Banu SK, Arosh JA. Intraluteal prostaglandin biosynthesis and signaling are selectively directed towards PGF2α during luteolysis but towards PGE2 during the establishment of pregnancy in sheep. Biol Reprod. 2012;87:1–14.

    Article  CAS  Google Scholar 

  87. Mamluk R, Defer N, Hanoune J, Meidan R. Molecular identification of adenyl cyclase 3 in bovine corpus luteum and its regulation by prostaglandin F2α-induced signaling pathways. Endocrinology. 1999;140:4601–8.

    CAS  PubMed  Google Scholar 

  88. Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, Versteeg HH. Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol. 2004;36:1187–205.

    Article  CAS  PubMed  Google Scholar 

  89. Hsi LC, Eling TE. Inhibition of EGF-dependent mitogenesis by prostaglandin E2 in Syrian hamster embryo fibroblasts. Prostag Leukotr Essent Fatty Acids. 1998;58:271–81.

    Article  CAS  Google Scholar 

  90. Kowalczyk AE, Kaczmarek MM, Schams D, Ziecik AJ. Effect of prostaglandin E(2) and tumor necrosis factor alpha on the VEGF-receptor system expression in cultured porcine luteal cells. Mol Reprod Dev. 2008;75:1558–66.

    Article  CAS  PubMed  Google Scholar 

  91. Kaczmarek MM, Kiewisz J, Schams D, Ziecik AJ. Expression of VEGF-receptor system in conceptus during peri-implantation period and endometrial and luteal expression of soluble VEGFR-1 in the pig. Theriogenology. 2009;71:1298–306.

    Article  CAS  PubMed  Google Scholar 

  92. Taniguchi H, Komiyama J, Viger RS, Okuda K. The expression of the nuclear receptors NR5A1 and NR5A2 and transcription factor GATA6 correlates with steroidogenic gene expression in the bovine corpus luteum. Mol Reprod Dev. 2009;76:873–80.

    Article  CAS  PubMed  Google Scholar 

  93. Hughes AL, Powell DW, Bard M, Eckstein J, Barbuch R, Link AJ. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 2007;5:143–9.

    Article  CAS  PubMed  Google Scholar 

  94. Lambert E, Williams DH, Lynch PB, Hanrahan TJ, McGeady TA, Austin FH, Boland MP, Roche JF. The extent and timing of prenatal loss in gilts. Theriogenology. 1991;36:655–65.

    Article  CAS  PubMed  Google Scholar 

  95. Jindal R, Cosgrove JR, Foxcroft GR. Progesterone mediates nutritionally induced effects on embryonic survival in gilts. J Anim Sci. 1997;75:1063–70.

    Article  CAS  PubMed  Google Scholar 

  96. Day BN, Pologe C. Effects of progesterone on fertilization and egg transport in the pig. J Reprod Fertil. 1968;17:227–30.

    Article  CAS  PubMed  Google Scholar 

  97. Mao J, Foxcroft GR. Progesterone therapy during early pregnancy and embryonal survival in primiparous weaned sows. J Anim Sci. 1998;76:1922–8.

    Article  CAS  PubMed  Google Scholar 

  98. Bolzan E, Andronowska A, Bodek G, Morawska-Pucinska E, Krawczynski K, Dabrowski A, Ziecik AJ. The novel effect of hCG administration on luteal function maintenance during the estrous cycle/pregnancy and early embryo development in the pig. Pol J Vet Sci. 2013;116:323–32.

    Google Scholar 

  99. Guthrie HD, Bolt DJ. Changes in plasma estrogen, luteinizing hormone, follicle stimulating hormone and 13,14-dihydro-15-ketoprostaglandin F2α during blockade of luteolysis in pigs after human chorionic gonadotropin treatment. J Anim Sci. 1983;52:993–1000.

    Article  Google Scholar 

  100. Ellicott AR, Dziuk PJ. Minimum daily dose of progesterone and plasma concentration for maintenance of pregnancy in ovariectomized gilts. Biol Reprod. 1973;9:300–4.

    CAS  PubMed  Google Scholar 

  101. Tilton JE, Schmidt AE, Weigl RM, Ziecik AJ. Ovarian steroid secretion changes after hCG stimulation in early pregnant pigs. Theriogenology. 1989;32:623–31.

    Article  CAS  PubMed  Google Scholar 

  102. Stone BA, Heap PA, Seamark RF. Changes in peripheral progestagen levels in early pregnant gilts following injection of human chorionic gonadotrophin. J Endocrinol. 1987;115:161–7.

    Article  CAS  PubMed  Google Scholar 

  103. Khan TH, Beck NF, Khalid M. The effects of GnRH analogue (buserelin) or hCG (Chorulon) on day 12 of pregnancy on ovarian function, plasma hormone concentrations, conceptus growth and placentation in ewes and ewe lambs. Anim Reprod Sci. 2007;102:247–57.

    Article  CAS  PubMed  Google Scholar 

  104. Rajamahendran R, Sianangama PC. Effect of human chorionic gonadotrophin on dominant follicles in cows: formation of accessory corpora lutea, progesterone production and pregnancy rates. J Reprod Fertil. 1992;95:577–84.

    Article  CAS  PubMed  Google Scholar 

  105. Chłopek J, Gilun P, Tabęcka Łonczyńska A, Koziorowski M, Stefańczyk-Krzymowska S. The effect of intravaginal application of estradiol and progesterone on porcine embryo development. Pol J Vet Sci. 2008;11(4):287–93.

    PubMed  Google Scholar 

  106. Pope WF, Lawyer MS, Butler WR, Foote RH, First NL. Dose-response shift in the ability of gilts to remain pregnant following exogenous estradiol-17beta exposure. J Anim Sci. 1986;63:1208–10.

    Article  CAS  PubMed  Google Scholar 

  107. Webel SK, Reimers TJ, Dziuk PJ. The lack of relationship between plasma progesterone levels and number of embryos and their survival in the pig. Biol Reprod. 1975;13:177–86.

    Article  CAS  PubMed  Google Scholar 

  108. Ziecik AJ, Lopinska M, Przygrodzka E, Wasielak M, Kempa W. Effect of hCG and intravaginal application of estradiol and prostaglandin E2 on pregnancy rate and litter size in gilts and sows. Anim Sci Pap Rep. 2014;32:5–13.

    CAS  Google Scholar 

  109. Geisert RD, Zavy MT, Wettemenn RP, Biggers BG. Length of pseudopregnancy and pattern of uterine protein release and influenced by time and duration of oestrogen administration in the pig. J Reprod Fertil. 1987;79:163–72.

    Article  CAS  PubMed  Google Scholar 

  110. Kidder HE, Casida LE, Grummer RH. Some effects of estrogen injections on estrual cycle of gilts. J Anim Sci. 1995;14:470–4.

    Article  Google Scholar 

  111. Pusateri AE, Wilson ME, Diekman MA. Maternal recognition of pregnancy in swine. II. Plasma concentrations of progesterone and 13,14-dihydro-15-keto-prostaglandin F2 alpha during the estrous cycle and during short and long pseudopregnancy in gilts. Biol Reprod. 1996;55(3):590–7.

    Article  CAS  PubMed  Google Scholar 

  112. Ziecik A, Doboszynska T, Dusza L. Concentrations of LH, prolactin and progesterone in early-pregnant and oestradiol treated pigs. Anim Reprod Sci. 1986;10:215–24.

    Article  CAS  Google Scholar 

  113. Przygrodzka E, Andronowska A, Janowski T, Zięcik AJ. The effect of vaginal administration of prostaglandin (PG) E2 and/or 17β-estradiol (E2) 1 on luteal function and histological characteristics of the cervix in cyclic pigs. Pol J Vet Sci. 2014;17:123–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The recent authors’ studies (2014–2015) described in this chapter were supported by the State Committee for Scientific Research (grant no. 2011/01/B/NZ4/04970) and the National Centre for Research and Development (NR 12-0039-10) in Poland. We thank J. Murawska-Kempa for her cheerful assistance in typing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Ziecik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ziecik, A.J., Przygrodzka, E., Kaczmarek, M.M. (2017). Corpus Luteum Regression and Early Pregnancy Maintenance in Pigs. In: Meidan, R. (eds) The Life Cycle of the Corpus Luteum. Springer, Cham. https://doi.org/10.1007/978-3-319-43238-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43238-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43236-6

  • Online ISBN: 978-3-319-43238-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics