How Do We Collect Data in the Perspective of New Personalize Medicine Tools in Rectal Cancer?

  • Elisa Meldolesi
  • Francesco Cellini
  • Giuditta Chiloiro
  • Andrea Damiani
  • Roberto Gatta
  • Maria Antonietta Gambacorta
  • Vincenzo Valentini
Chapter

Abstract

During the last two decades, we have witnessed a remarkable transformation of the internal medicine concept with the establishment of the new idea of the personalized medicine. Starting from an inflexible “one size fits all similar group” approach, where the same treatment is used for the same kind of tumor, clinical practice is moving toward a personalized medicine with an essential role of decision support systems (DSS). Besides the widely accepted and daily used clinical guidelines, results of thousands of randomized clinical trials (RCTs), systematic reviews, or meta-analyses conducted in the last 15 years, population-based observational studies are progressively emerging as a complementary form of research, often named “Rapid Learning Health Care” (RLHC) [1–3]. The long time requested to evaluate new drugs or treatment strategies in a RCT, the possibility to enroll only selective subgroups of general population, and the high heterogeneity (in terms of outcomes, methodology, patient’s characteristics, data storing systems, etc.) between different studies justify the key role of observational studies in ensuring not only if the practice has changed appropriately during the time but also if the result of clinical trials translates into tangible benefits in the general population [1].

References

  1. 1.
    Booth CM, Tannock IF (2014). Randomised controlled trials and population-based observational research: partners in the evolution of medical evidence. Br J Cancer [Internet], Nature Publishing Group 110(3):551–555. [cited 2014 May 28]. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3915111&tool=pmcentrez&rendertype=abstract
  2. 2.
    Lambin P, Zindler J, Vanneste B, van de Voorde L, Jacobs M, Eekers D, et al (2015) Modern clinical research: how rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol [Internet] 54(9):1289–300. [cited 2015 Dec 8]. Available from http://www.ncbi.nlm.nih.gov/pubmed/26395528
  3. 3.
    Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, Zegers CML, et al (2013) “Rapid Learning health care in oncology” – an approach towards decision support systems enabling customised radiotherapy’. Radiother Oncol [Internet], Elsevier Ireland Ltd 109(1):159–164. [cited 2014 Mar 23]. Available from http://www.ncbi.nlm.nih.gov/pubmed/23993399
  4. 4.
    Naqa I El, Deasy JO, Mu Y, Huang E, Hope AJ, Lindsay PE, et al (2010) Datamining approaches for modeling tumor control probability. Acta Oncol 49(8):1363–73. [cited 2015 May 22]. Available from http://www.ncbi.nlm.nih.gov/pubmed/20192878
  5. 5.
    Sullivan R, Peppercorn J, Sikora K, Zalcberg J, Meropol NJ, Amir E, et al (2011) Delivering affordable cancer care in high-income countries. Lancet Oncol [Internet] 12(10):933–980. [cited 2015 Apr 28]. Available from http://www.ncbi.nlm.nih.gov/pubmed/21958503
  6. 6.
    Lambin P, van Stiphout RGPM, Starmans MHW, Rios-Velazquez E, Nalbantov G, Aerts HJWL, et al (2013) Predicting outcomes in radiation oncology – multifactorial decision support systems. Nat Rev Clin Oncol [Internet], Nature Publishing Group 10(1):27–40. [cited 2014 Mar 26]. Available from http://www.ncbi.nlm.nih.gov/pubmed/23165123
  7. 7.
    Abernethy AP, Etheredge LM, Ganz PA, Wallace P, German RR, Neti C, et al (2010) Rapid-learning system for cancer care. J Clin Oncol [Internet] 28(27):4268–74. [cited 2014 Mar 21]. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2953977&tool=pmcentrez&rendertype=abstract
  8. 8.
    Mok TS, Wu Y, Thongprasert S, Yang C-H, Chu D-T, Saijo N, et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med [Internet] 361(10):947–957. [cited 2015 Jan 18]. Available from http://www.ncbi.nlm.nih.gov/pubmed/19692680
  9. 9.
    Bentzen SM1 HJ (1999) Variability in the radiosensitivity of normal cells and tissues. In: Report from a workshop organised by the European Society for Therapeutic Radiology and Oncology in Edinburgh, 19 September 1998. Int J Radiat Biol 75(4):513–517.Google Scholar
  10. 10.
    De KNF (2000) Understanding terminological systems I : terminology and typology. Methods Inf Med 39:16–21. Available from https://www.researchgate.net/publication/12531421_Understanding_terminological_systems._I_Terminology_and_typology CrossRefGoogle Scholar
  11. 11.
    De KNF (2000) Understanding terminological systems II : experience with conceptual and formal representation of structure. Method Inf Med 39:22–29CrossRefGoogle Scholar
  12. 12.
    Meldolesi E, van Soest J, Dinapoli N, Dekker A, Damiani A, Gambacorta MA, et al (2015) Medicine is a science of uncertainty and an art of probability (Sir W. Osler). Radiother Oncol [Internet] 114(1):132–4. [cited 2015 May 5]. Available from http://www.ncbi.nlm.nih.gov/pubmed/25616538
  13. 13.
    Meldolesi E, van Soest J, Dinapoli N, Dekker A, Damiani A, Gambacorta MA, et al (2014) An umbrella protocol for standardized data collection (SDC) in rectal cancer: a prospective uniform naming and procedure convention to support personalized medicine. Radiother Oncol [Internet] 112(1):59–62. [cited 2014 Nov 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24853366
  14. 14.
    Meldolesi E, van Soest J, Alitto AR, Autorino R, Dinapoli N, Dekker A, et al (2014) VATE: VAlidation of high TEchnology based on large database analysis by learning machine. Color Cancer [Internet] 3(5):435–450. [cited 2014 Dec 10]. Available from http://www.futuremedicine.com/doi/abs/10.2217/crc.14.34
  15. 15.
    Berners-Lee Tim, Hendler James LO (2001) “The Semantic Web” A new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Sci Am Mag. [Internet]. Available from http://www.cs.umd.edu/~golbeck/LBSC690/SemanticWeb.html
  16. 16.
    Valentini V, Aristei C, Glimelius B, Minsky BD, Beets-Tan R, Borras JM, et al (2009) Multidisciplinary Rectal Cancer Management: 2nd European Rectal Cancer Consensus Conference (EURECA-CC2). Radiother Oncol [Internet], Elsevier Ireland Ltd 92(2):148–63. [cited 2014 Mar 28]. Available from http://www.ncbi.nlm.nih.gov/pubmed/19595467
  17. 17.
    Meldolesi E, van Soest J, Damiani A, Dekker A, Alitto AR, Campitelli M, et al (2016) Standardized data collection to build prediction models in oncology: a prototype for rectal cancer. Future Oncol [Internet].12(1):119–36. Available from http://www.ncbi.nlm.nih.gov/pubmed/26674745
  18. 18.
    Collins GS, Reitsma JB, Altman DG, Moons KGM (2015) Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD Statement. Br J Surg [Internet] 102(3):148–58. [cited 2015 Jul 3]. Available from http://annals.org/article.aspx?doi=10.7326/M14-0697
  19. 19.
    Haustermans K, Debucquoy A, Lambrecht M. (2011) The ESTRO Breur Lecture 2010: toward a tailored patient approach in rectal cancer. Radiother Oncol [Internet], Elsevier Ireland Ltd100(1):15–21. [cited 2014 Mar 28]. Available from http://www.ncbi.nlm.nih.gov/pubmed/21632132
  20. 20.
    Jiang H, An L, Baladandayuthapani V, Auer PL (2014) Classification, predictive modelling, and statistical analysis of cancer data (a). Cancer Inform [Internet] 13(Suppl 2):1–3. [cited 2015 Jun 19]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4179642&tool=pmcentrez&rendertype=abstract

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Elisa Meldolesi
    • 1
  • Francesco Cellini
    • 1
  • Giuditta Chiloiro
    • 1
  • Andrea Damiani
    • 1
  • Roberto Gatta
    • 1
  • Maria Antonietta Gambacorta
    • 1
  • Vincenzo Valentini
    • 1
  1. 1.Department of Radiation OncologyUniversità Cattolica Sacro Cuore, Fondazione Policlinico Universitario A.GemelliRomeItaly

Personalised recommendations