Should Biological Targeted Agents be Combined with Preoperative Chemoradiation in Rectal Cancer? An Update

  • Hélène Poels
  • Pieter-Jan Cuyle
  • Eric Van Cutsem


It has been shown that preoperative chemoradiation improves local control and sphincter preservation in the treatment of rectal cancer. It is associated with reduced toxicity but it does not improve survival when compared with postoperative therapy [1]. The advantages of preoperative chemoradiation in the treatment of locally advanced rectal cancer (LARC) have been clearly demonstrated. Neoadjuvant chemoradiotherapy (CRT) improves local control, as well as sphincter preservation rates [1]. Over the recent decades, neoadjuvant CRT with fluoropyrimidines followed by total mesorectal excision (TME) has become the standard therapy for locally advanced rectal cancer [1–3]. Although the local recurrence rate is generally low (<10%), systemic recurrence still remains a problem in about 25–30% of cases. In an attempt to improve disease-free survival (DFS) and overall survival (OS) rates, many studies have been conducted to investigate the role of the combination of radiotherapy with cytotoxic drugs and targeted agents and of radiosensitizing agents. This manuscript discusses the integration of epidermal growth factor receptor (EGFR) inhibitors and vascular endothelial growth factor (VEGF) inhibition in the neoadjuvant treatment for LARC.


  1. 1.
    Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351(17):1731–1740PubMedCrossRefGoogle Scholar
  2. 2.
    Bosset JF, Collette L, Calais G et al (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355(11):1114–1123PubMedCrossRefGoogle Scholar
  3. 3.
    Gérard JP, Conroy T, Bonnetain F et al (2006) Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J Clin Oncol 24(28):4620–4625PubMedCrossRefGoogle Scholar
  4. 4.
    Kopp R, Rothbauer E, Mueller E et al (2003 Oct) Reduced survival of rectal cancer patients with increased tumor epidermal growth factor receptor levels. Dis Colon Rectum 46(10):1391–1399PubMedCrossRefGoogle Scholar
  5. 5.
    Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345PubMedCrossRefGoogle Scholar
  6. 6.
    Van Cutsem E, Köhne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastastic colorectal cancer. N Engl J Med 360(14):1408–1417PubMedCrossRefGoogle Scholar
  7. 7.
    Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6):567–578PubMedCrossRefGoogle Scholar
  8. 8.
    Cabebe EC, Kuo T, Koong A et al (2008) Phase I trial of preoperative cetuximab in combination with oxaliplatin, capecitabine, and radiation therapy for locally advanced rectal cancer. J Clin Oncol (Meet Abstr) 26(15_suppl):15019CrossRefGoogle Scholar
  9. 9.
    Chung K, Minsky B, Schrag D et al (2006) Phase I trial of preoperative cetuximab with concurrent continuous infusion 5-fluorouracil and pelvic radiation in patients with local-regionally advanced rectal cancer. J Clin Oncol 24(18 suppl):256. (Abstract #3560)Google Scholar
  10. 10.
    Hofheinz R, Horisberge K, Woernle C et al (2006) Phase I trial of cetuximab in combination with capecitabine, weekly irinotecan and radio therapy as neoadjuvant therapy for rectal cancer. Int J Radiat Oncol Biol Phys 66:1384–1390PubMedCrossRefGoogle Scholar
  11. 11.
    Machiels J, Sempoux C, Scalliet P et al (2007) Phase I/II study of preoperative cetuximab, capecitabine, and external beam radiotherapy in patients with rectal cancer. Ann Oncol 18:738–744PubMedCrossRefGoogle Scholar
  12. 12.
    Mai SK, Hoffheinz R, Treschl A et al (2008) Correlation of minimal tumor dose and Histopathological regression of rectal cancer after Neoadjuvant combined radio-chemo-immunotherapy - results of a prospective phase I/II study (Cetuximab Capiri-RT). Int J Radiat Oncol Biol Phys 72:S263CrossRefGoogle Scholar
  13. 13.
    Rödel C, Arnold D, Hipp M et al (2008) Phase I-II trial of cetuximab, capecitabine, oxaliplatin, and radiotherapy as preoperative treatment in rectal cancer. Int J Radiat Oncol Biol Phys 70(4):1081–1086PubMedCrossRefGoogle Scholar
  14. 14.
    Bertolini F, Chiara S, Bengala C et al (2009) Neoadjuvant treatment with single-agent cetuximab followed by 5-FU, cetuximab, and pelvic radiotherapy: a phase II study in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 73(2):466–472. Epub 2008 Nov 10PubMedCrossRefGoogle Scholar
  15. 15.
    Eisterer WM, De Vries A, Oefner D et al (2009) Neoadjuvant chemoradiation therapy with capecitabine (X) plus cetuximab (C), and external beam radiotherapy (RT) in locally advanced rectal cancer (LARC): ABCSG trial R03. J Clin Oncol 27(15s):4109Google Scholar
  16. 16.
    Kim SY, Hong YS, Kim DY et al (2011) Preoperative chemoradiation with cetuximab, irinotecan, and capecitabine in patients with locally advanced resectable rectal cancer: a multicenter phase II study. Int J Radiat Oncol Biol Phys 81(3):677–683PubMedCrossRefGoogle Scholar
  17. 17.
    Horisberger K, Treschl A, Mai S et al (2009) Cetuximab in combination with capecitabine, irinotecan, and radiotherapy for patients with locally advanced rectal cancer: results of a phase II MARGIT trial. Int J Radiat Oncol Biol Phys 74(5):1487–1493PubMedCrossRefGoogle Scholar
  18. 18.
    McCollum AD, Kocs DM, Chada P et al (2010) A randomized phase II trial of preoperative chemoradiotherapy with or without cetuximab in locally advanced adenocarcinoma of the rectum. J Clin Oncol 28(15s):3635CrossRefGoogle Scholar
  19. 19.
    Velenik V, Ocvirk J, Oblak I et al (2010) A phase II study of cetuximab, capecitabine and radiotherapy in neoadjuvant treatment of patients with locally advanced resectable rectal cancer. Eur J Surg Oncol 36(3):244–250PubMedCrossRefGoogle Scholar
  20. 20.
    Dewdney A, Capdevila J, Glimelius B et al (2011) EXPERT-C: a randomized, phase II European multicenter trial of neoadjuvant capecitabine plus oxaliplatin chemotherapy (CAPOX) and chemoradiation (CRT) with or without cetuximab followed by total mesorectal excision (TME) in patients with MRI-defined, high-risk rectal cancer. J Clin Oncol 29:3513CrossRefGoogle Scholar
  21. 21.
    Sun PL, Li B (2012) Ye QF effect of neoadjuvant cetuximab, capecitabine, and radiotherapy for locally advanced rectal cancer: results of a phase II study. Int J Color Dis 27(10):1325–1332CrossRefGoogle Scholar
  22. 22.
    Kripp M, Horisberger K, Mai S et al (2015) Does the addition of Cetuximab to Radiochemotherapy improve outcome of patients with locally advanced rectal cancer? Long-term results from phase II trials. Gastroenterol Res Pract 2015:273489PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pinto C, Di Fabio F, Maiello E et al (2011) Phase II study of panitumumab, oxaliplatin, 5-fluorouracil, and concurrent radiotherapy as preoperative treatment in high-risk locally advanced rectal cancer patients (StarPan/STAR-02 study). Ann Oncol 22(11):2424–2430PubMedCrossRefGoogle Scholar
  24. 24.
    Helbling D, Bodoky G, Gautschi O et al (2011) Neoadjuvant chemoradiation (CRT) with or without panitumumab (pan) in patients with K-ras-unmutated, locally advanced rectal cancer (LARC): a randomized multicenter phase II trial (SAKK 41/07). J Clin Oncol 29:3546CrossRefGoogle Scholar
  25. 25.
    Mardjuadi FI, Carrasco J, Coche JC et al (2015) Panitumumab as a radiosensitizing agent in KRAS wild-type locally advanced rectal cancer. Target Oncol 10(3):375–383PubMedCrossRefGoogle Scholar
  26. 26.
    Czito BG, Willett CG, Bendell JC et al (2006 Feb) Increased toxicity with gefitinib, capecitabine, and radiation therapy in pancreatic and rectal cancer: phase I trial results. J Clin Oncol 24(4):656–662PubMedCrossRefGoogle Scholar
  27. 27.
    Valentini V, De Paoli A, Gambacorta MA et al (2008) Infusional 5-fluorouracil and ZD1839 (Gefitinib-Iressa) in combination with preoperative radiotherapy in patients with locally advanced rectal cancer: a phase I and II trial (1839IL/0092). Int J Radiat Oncol Biol Phys 72(3):644–649PubMedCrossRefGoogle Scholar
  28. 28.
    Rödel C, Graeven U, Fietkau R et al (2015) Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 16(8):979–989PubMedCrossRefGoogle Scholar
  29. 29.
    Aschele C, Cionini L, Lonardi S et al (2011) Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol 29(20):2773–2780PubMedCrossRefGoogle Scholar
  30. 30.
    Gérard JP, Azria D, Gourgou-Bourgade S et al (2010) Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol 28(10):1638–1644PubMedCrossRefGoogle Scholar
  31. 31.
    Allegra CJ, Yothers G, O'Connell MJ et al (2015) Neoadjuvant 5-FU or Capecitabine plus radiation with or without Oxaliplatin in rectal cancer patients: a phase III randomized clinical trial. J Natl Cancer Inst 107(11):djv248PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Schmoll H-J, Haustermans K, Price TJ et al (2013) Preoperative chemoradiotherapy and postoperative chemotherapy with capecitabine and oxaliplatin versus capecitabine alone in locally advanced rectal cancer: first results of the PETACC-6 randomized phase III trial. J Clin Oncol Abstr 31:3531CrossRefGoogle Scholar
  33. 33.
    Morelli MP, Overman MJ, Dasari A et al (2015) Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann Oncol 26(4):731–736PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wadlow RC, Ryan DP (2010). The role of targeted agents in preoperative chemoradiation for rectal cancer. Cancer 116(51):3537–3548Google Scholar
  35. 35.
    Nyati MK, Morgan MA, Feng FY et al (2006) Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer 6(11):876–885PubMedCrossRefGoogle Scholar
  36. 36.
    Glynne-Jones R, Harrison M, Hughes R (2013) Challenges in the neoadjuvant treatment of rectal cancer: balancing the risk of recurrence and quality of life. Cancer Radiother 17(7):675–685PubMedCrossRefGoogle Scholar
  37. 37.
    Giralt J, de las Heras M, Cerezo L et al (2005) The expression of epidermal growth factor receptor results in a worse prognosis for patients with rectal cancer treated with preoperative radiotherapy: a multicenter, retrospective analysis. Radiother Oncol 74(2):101–108PubMedCrossRefGoogle Scholar
  38. 38.
    Ku GY, Haaland BA, de Lima Lopes G Jr (2012) Cetuximab in the first-line treatment of K-ras wild-type metastatic colorectal cancer: the choice and schedule of fluoropyrimidine matters. Cancer Chemother Pharmacol 70(2):231–238PubMedCrossRefGoogle Scholar
  39. 39.
    Rödel C, Martus P, Papadoupolos T et al (2005) Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 23(34):8688–8696PubMedCrossRefGoogle Scholar
  40. 40.
    Roh MS, Colangelo LH, O'Connell MJ et al (2009) Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol 27(31):5124–5130PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Maas M, Nelemans PJ, Valentini V et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11(9):835–844PubMedCrossRefGoogle Scholar
  42. 42.
    Tural D, Selcukbiricik F, Özturk MA et al (2013) The relation between pathological complete response and clinical outcome in patients with rectal cancer. Hepato-Gastroenterology 60(126):1365–1370PubMedGoogle Scholar
  43. 43.
    Sclafani F, Gonzalez D, Cunningham D et al (2014) RAS mutations and cetuximab in locally advanced rectal cancer: results of the EXPERT-C trial. Eur J Cancer 50(8):1430–1436PubMedCrossRefGoogle Scholar
  44. 44.
    Erben P, Strobel P, Horisberger K et al (2011) KRAS and BRAF mutations and PTEN expression do not predict efficacy of cetuximab-based chemoradiotherapy in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 81:1032–1038PubMedCrossRefGoogle Scholar
  45. 45.
    Atkins D, Reiffen KA, Tegtmeier CL et al (2004) Immunohistochemical detection of EGFR in paraffin-embedded tumor tissue: variations in staining intensity due to choice of fixative and storage time of tissue sections. J Histochem Cytochem 52:893–901PubMedCrossRefGoogle Scholar
  46. 46.
    Bengala C, Bettelli S, Bertolini F et al (2009) Epidermal growth factor receptor gene copy number, K-ras mutation and pathological response to preoperative cetuximab, 5-FU and radiation therapy in locally advanced rectal cancer. Ann Oncol 20(3):469–474PubMedCrossRefGoogle Scholar
  47. 47.
    Grimminger PP, Danenberg P, Dellas K et al (2011) Biomarkers for cetuximab-based neoadjuvant radiochemotherapy in locally advanced rectal cancer. Clin Cancer Res 17(10):3469–3477PubMedCrossRefGoogle Scholar
  48. 48.
    Bengala C, Bettelli S, Bertolini F et al (2010) Prognostic role of EGFR gene copy number and KRAS mutation in patients with locally advanced rectal cancer treated with preoperative chemoradiotherapy. Br J Cancer 103(7):1019–1024PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Douillard JY, Oliner KS, Siena S et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034PubMedCrossRefGoogle Scholar
  50. 50.
    Debucquoy A, Haustermans K, Daemen A et al (2009) Molecular response to cetuximab and efficacy of preoperative cetuximab-based chemoradiation in rectal cancer. J Clin Oncol 27(17):2751–2757PubMedCrossRefGoogle Scholar
  51. 51.
    Hu-Lieskovan S, Vallbohmer D, Zhang W et al (2011) EGF61 polymorphism predicts complete pathologic response to cetuximab-based chemoradiation independent of KRAS status in locally advanced rectal cancer patients. Clin Cancer Res 17(15):5161–5169PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Huerta S, Gao X (2009) Saha D mechanisms of resistance to ionizing radiation in rectal cancer. Expert Rev Mol Diagn 9(5):469–480PubMedCrossRefGoogle Scholar
  53. 53.
    Smith FM, Reynolds JV, Miller N et al (2006) Pathological and molecular predictors of the response of rectal cancer to neoadjuvant radiochemotherapy. Eur J Surg Oncol 32(1):55–64PubMedCrossRefGoogle Scholar
  54. 54.
    Chen MB, Wu XY, Yu R et al (2012) P53 status as a predictive biomarker for patients receiving neoadjuvant radiation-based treatment: a meta-analysis in rectal cancer. PLoS One 7(9):e45388PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431PubMedCrossRefGoogle Scholar
  56. 56.
    Petitjean A, Mathe E, Kato S et al (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629PubMedCrossRefGoogle Scholar
  57. 57.
    Sclafani F, Gonzalez D, Cunningham D et al (2014) TP53 mutational status and cetuximab benefit in rectal cancer: 5-year results of the EXPERT-C trial. J Natl Cancer Inst 106(7):dju121PubMedCrossRefGoogle Scholar
  58. 58.
    Sclafani F, Chau I, Cunningham D et al (2015) Prognostic role of the LCS6 KRAS variant in locally advanced rectal cancer: results of the EXPERT-C trial. Ann Oncol 26(9):1936–1941PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427PubMedCrossRefGoogle Scholar
  60. 60.
    Willett CG, Kozin SV, Duda DG et al (2006) Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol 33(5 Suppl 10):S35–S40PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wadlow RC, Ryan DP (2010) The role of targeted agents in preoperative chemoradiation for rectal cancer. Cancer 116(15):3537–3548PubMedCrossRefGoogle Scholar
  63. 63.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L et al (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65PubMedCrossRefGoogle Scholar
  64. 64.
    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342PubMedCrossRefGoogle Scholar
  65. 65.
    Saltz LB, Clarke S, Díaz-Rubio E et al (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26(12):2013–2019PubMedCrossRefGoogle Scholar
  66. 66.
    Czito BG, Bendell JC, Willett CG et al (2007) Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: phase I trial results. Int J Radiat Oncol Biol Phys 68(2):472–478PubMedCrossRefGoogle Scholar
  67. 67.
    Blaszkowsky LS, Hong TS, Zhu AX, et al. A phase I/II study of bevacizumab (beva), erlotinib (erl), and 5-fluorouracil (5-FU) with concurrent external beam radiation therapy (RT) in locally advanced rectal cancer (LARC). J Clin Oncol 27:15s, 2009 (suppl; abstr 4106)Google Scholar
  68. 68.
    Willett CG, Duda DG, di Tomaso E et al (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Crane CH, Eng C, Feig BW et al (2010) Phase II trial of neoadjuvant bevacizumab, capecitabine, and radiotherapy for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 76(3):824–830PubMedCrossRefGoogle Scholar
  70. 70.
    Kennecke H, Berry S, Wong R et al (2012) Pre-operative bevacizumab, capecitabine, oxaliplatin and radiation among patients with locally advanced or low rectal cancer: a phase II trial. Eur J Cancer 48(1):37–45PubMedCrossRefGoogle Scholar
  71. 71.
    Nogué M, Salud A, Vicente P et al (2011) Addition of bevacizumab to XELOX induction therapy plus concomitant capecitabine-based chemoradiotherapy in magnetic resonance imaging-defined poor-prognosis locally advanced rectal cancer: the AVACROSS study. Oncologist 16(5):614–620PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Resch G, De Vries A, Ofner D et al (2012) Preoperative treatment with capecitabine, bevacizumab and radiotherapy for primary locally advanced rectal cancer - a two stage phase II clinical trial. Radiother Oncol 102(1):10–13PubMedCrossRefGoogle Scholar
  73. 73.
    Spigel DR, Bendell JC, McCleod M et al (2012) Phase II study of Bevacizumab and Chemoradiation in the preoperative or adjuvant treatment of patients with stage II/III rectal cancer. Clin Colorectal Cancer 11(1):45–52PubMedCrossRefGoogle Scholar
  74. 74.
    Velenik V, Ocvirk J, Music M et al (2011) Neoadjuvant capecitabine, radiotherapy, and bevacizumab (CRAB) in locally advanced rectal cancer: results of an open-label phase II study. Radiat Oncol 6:105PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dipetrillo T, Pricolo V, Lagares-Garcia J et al (2012) Neoadjuvant Bevacizumab, Oxaliplatin, 5-fluorouracil, and radiation for rectal cancer. Int J Radiat Oncol Biol Phys 82(1):124–129PubMedCrossRefGoogle Scholar
  76. 76.
    Liang JT, Lai HS, Cheng KW (2011) Technical feasibility of laparoscopic total mesorectal excision for patients with low rectal cancer after concurrent radiation and chemotherapy with bevacizumab plus FOLFOX. Surg Endosc 25(1):305–308PubMedCrossRefGoogle Scholar
  77. 77.
    Marijnen CA, Rutten H, de Wilt H et al (2008) Preoperative chemoradiotherapy regimen with capecitabine and bevacizumab in locally advanced rectal cancer: a feasibility study of the Dutch colorectal cancer group (DCCG). J Clin Oncol 26(20 suppl):15040CrossRefGoogle Scholar
  78. 78.
    Gasparini G, Torino F, Ueno T et al (2012) A phase II study of neoadjuvant bevacizumab plus capecitabine and concomitant radiotherapy in patients with locally advanced rectal cancer. Angiogenesis 15:141–150PubMedCrossRefGoogle Scholar
  79. 79.
    Dellas K, Höhler T, Reese T et al (2013) Phase II trial of preoperative radiochemotherapy with concurrent bevacizumab, capecitabine and oxaliplatin in patients with locally advanced rectal cancer. Radiat Oncol 8:90PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Landry JC, Feng Y, Cohen SJ et al (2013) Phase 2 study of preoperative radiation with concurrent capecitabine, oxaliplatin, and bevacizumab followed by surgery and postoperative 5-fluorouracil, leucovorin, oxaliplatin (FOLFOX), and bevacizumab in patients with locally advanced rectal cancer: ECOG 3204. Cancer 119(8):1521–1527PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wang CC, Liang JT, Tsai CL et al (2014) Neoadjuvant bevacizumab and chemoradiotherapy in locally advanced rectal cancer: early outcome and technical impact on toxicity. World J Surg Oncol 12:329PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    García M, Martinez-Villacampa M, Santos C et al (2015) Phase II study of preoperative bevacizumab, capecitabine and radiotherapy for resectable locally-advanced rectal cancer. BMC Cancer 15:59PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sadahiro S, Suzuki T, Tanaka A et al (2015) Phase II study of preoperative concurrent chemoradiotherapy with S-1 plus bevacizumab for locally advanced resectable rectal adenocarcinoma. Oncology 88(1):49–56PubMedCrossRefGoogle Scholar
  84. 84.
    Salazar R, Capdevila J, Laquente B et al (2015) A randomized phase II study of capecitabine-based chemoradiation with or without bevacizumab in resectable locally advanced rectal cancer: clinical and biological features. BMC Cancer 15:60PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Borg C, André T, Mantion G et al (2014) Pathological response and safety of two neoadjuvant strategies with bevacizumab in MRI-defined locally advanced T3 resectable rectal cancer: a randomized, noncomparative phase II study. Ann Oncol 25(11):2205–2210PubMedCrossRefGoogle Scholar
  86. 86.
    Hasegawa J, Mizushima T, Kim HM et al (2013) Neoadjuvant capecitabine and oxaliplatin (XELOX) with bevacizumab for locally advanced rectal cancer. J Clin Oncol 30(Suppl 34):566CrossRefGoogle Scholar
  87. 87.
    Fernandez-Martos C (2014) Estevan R et al preoperative chemotherapy in patients with intermediate-risk rectal adenocarcinoma selected by high-resolution magnetic resonance imaging: the GEMCAD 0801 phase II multicenter trial. Oncologist 19(10):1042–1043PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Schrag D, Weiser MR, Goodman KA et al (2014) Neoadjuvant chemotherapy without routine use of radiation therapy for patients with locally advanced rectal cancer: a pilot trial. J Clin Oncol 32:513–518PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Verstraete M, Debucquoy A, Dekervel J et al (2015) Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial. Br J Cancer 112(8):1314–1325PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Xiao J, Chen Z, Li W et al (2015) Sandwich-like neoadjuvant therapy with bevacizumab for locally advanced rectal cancer: a phase II trial. Cancer Chemother Pharmacol 76(1):21–27PubMedCrossRefGoogle Scholar
  91. 91.
    Glynne-Jones R, Hava N, Goh V et al (2015) Bevacizumab and combination chemotherapy in rectal cancer until surgery (BACCHUS): a phase II, multicentre, open-label, randomised study of neoadjuvant chemotherapy alone in patients with high-risk cancer of the rectum. BMC Cancer 15:764PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Jubb AM, Hurwitz HI, Bai W et al (2006) Impact of vascular endothelial growth factor-a expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 24(2):217–227PubMedCrossRefGoogle Scholar
  93. 93.
    Lambrechts D, Lenz HJ, de Haas S et al (2013) Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol 31(9):1219–1230PubMedCrossRefGoogle Scholar
  94. 94.
    Holden SN, Ryan E, Kearns A et al. (2005) Benefit from bevacizumab (BV) is independent of pretreatment plasma vascular endothelial growth factor-A (pl-VEGF) in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol 2005 ASCO Annu Meet Proc 23 No 16S (June 1 Supplement): 3555Google Scholar
  95. 95.
    Des Guetz G, Uzzan B, Nicolas P et al (2006) Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 94(12):1823–1832PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Frank RE, Saclarides TJ, Leurgans S et al (1995) Tumor angiogenesis as a predictor of recurrence and survival in patients with node-negative colon cancer. Ann Surg 222(6):695–699PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Zheng S, Han MY, Xiao ZX et al (2003) Clinical significance of vascular endothelial growth factor expression and neovascularization in colorectal carcinoma. World J Gastroenterol 9(6):1227–1230PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Galizia G, Lieto E, Ferraraccio F et al (2004) Determination of molecular marker expression can predict clinical outcome in colon carcinomas. Clin Cancer Res 10(10):3490–3499PubMedCrossRefGoogle Scholar
  99. 99.
    Ronzoni M, Manzoni M, Mariucci S et al (2010) Circulating endothelial cells and endothelial progenitors as predictive markers of clinical response to bevacizumab-based first-line treatment in advanced colorectal cancer patients. Ann Oncol 21(12):2382–2389PubMedCrossRefGoogle Scholar
  100. 100.
    Fiedler U, Scharpfenecker M, Koidl S et al (2004) The tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103(11):4150–4156PubMedCrossRefGoogle Scholar
  101. 101.
    Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60PubMedCrossRefGoogle Scholar
  102. 102.
    Scharpfenecker M, Fiedler U, Reiss Y et al (2005) The tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118:771–780PubMedCrossRefGoogle Scholar
  103. 103.
    Falcón BL, Hashizume H, Koumoutsakos P et al (2009) Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol 175(5):2159–2170PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Liu Y, Starr MD, Bulusu A et al (2013) Correlation of angiogenic biomarker signatures with clinical outcomes in metastatic colorectal cancer patients receiving capecitabine, oxaliplatin, and bevacizumab. Cancer Med 2(2):234–242PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Goede V, Coutelle O (2010) Neuneier J et al identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br J Cancer 103(9):1407–1414Google Scholar
  106. 106.
    Loupakis F, Cremolini C, Fioravanti A et al (2011) Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer. Br J Cancer 104(8):1262–1269PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Miles DW, de Haas SL, Dirix LY et al (2013) Biomarker results from the AVADO phase 3 trial of first-line bevacizumab plus docetaxel for HER2-negative metastatic breast cancer. Br J Cancer 108(5):1052–1060PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cameron D, Brown J, Dent R et al (2013) Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol 14(10):933–942PubMedCrossRefGoogle Scholar
  109. 109.
    Koch AE, Polverini PJ, Kunkel SL et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801PubMedCrossRefGoogle Scholar
  110. 110.
    Varney ML, Olsen KJ, Mosley RL et al (2002) Monocyte/macrophage recruitment, activation and differentiation modulate interleukin-8 production: a paracrine role of tumor-associated macrophages in tumor angiogenesis. In Vivo 16(6):471–477PubMedGoogle Scholar
  111. 111.
    Huang D, Ding Y, Zhou M et al (2010) Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 70(3):1063–1071PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Abajo A, Boni V, Lopez I et al (2012) Identification of predictive circulating biomarkers of bevacizumab-containing regimen efficacy in pre-treated metastatic colorectal cancer patients. Br J Cancer 107(2):287–290PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kopetz S, Hoff PM, Morris JS et al (2010) Circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol 28(3):453–459PubMedCrossRefGoogle Scholar
  114. 114.
    Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 11(12):1172–1183PubMedCrossRefGoogle Scholar
  115. 115.
    Shojaei F, Wu X, Zhong C et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831PubMedCrossRefGoogle Scholar
  116. 116.
    Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34PubMedCrossRefGoogle Scholar
  117. 117.
    Pan Q, Chanthery Y, Liang WC et al (2007) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11(1):53–67PubMedCrossRefGoogle Scholar
  118. 118.
    Li JL, Sainson RC, Shi W et al (2007) Delta-like 4 notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67(23):11244–11253PubMedCrossRefGoogle Scholar
  119. 119.
    Schneider BP, Radovich M (2009) Miller KD the role of vascular endothelial growth factor genetic variability in cancer. Clin Cancer Res 15(17):5297–5302PubMedCrossRefGoogle Scholar
  120. 120.
    De Stefano A, Carlomagno C, Pepe S et al (2011) Bevacizumab-related arterial hypertension as a predictive marker in metastatic colorectal cancer patients. Cancer Chemother Pharmacol 68(5):1207–1213PubMedCrossRefGoogle Scholar
  121. 121.
    Österlund P, Soveri LM, Isoniemi H et al (2011) Hypertension and overall survival in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapy. Br J Cancer 104(4):599–604PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Scartozzi M, Galizia E, Chiorrini S et al (2009) Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol 20(2):227–230PubMedCrossRefGoogle Scholar
  123. 123.
    Guiu B, Petit JM, Bonnetain F et al (2010) Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut 59(3):341–347PubMedCrossRefGoogle Scholar
  124. 124.
    Zweifel M, Padhani AR (2010) Perfusion MRI in the early clinical development of antivascular drugs: decorations or decision making tools? Eur J Nucl Med Mol Imaging 37(Suppl 1):S164–S182PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Hélène Poels
    • 1
  • Pieter-Jan Cuyle
    • 1
  • Eric Van Cutsem
    • 1
  1. 1.Digestive OncologyUniversity Hospitals LeuvenLeuvenBelgium

Personalised recommendations