What Is the Contribution of Brachytherapy in Tailoring Local Therapy?

  • Jean Pierre Gérard
  • Té Vuong
  • Jérome Doyen
  • Arthur Sun Myint
Chapter

Abstract

Brachytherapy is a generic term to describe radiation techniques using short (less than 6 cm) focus surface distance (FSD). It is in contrast with “teletherapy,” usually performed using linear accelerators and a long FSD (80 cm or more) often called external beam radiation therapy (EBRT). The dose distribution in brachytherapy depends for a major part on the inverse square law which implies that with a short FSD (1–6 cm), the radiation dose fall off is very rapid (percentage depth dose close to 50% at 0.5 cm from the “surface dose”). The smaller the FSD (≤ 1 cm), the more rapid is the dose gradient. This fall off (and dose inhomogeneity) is mainly independent of the beam energy (between 50 kV and 1.3 mV). Using 50 kV with an FSD of 4 cm produces at 5 mm depth a dose of 65% of surface dose compared to only 30% when using Iridium 192 (300 kV) with a FSD of 1 cm. Broadly speaking, brachytherapy can be performed with two general approaches:
  1.  1. 

    Radionuclide brachytherapy usually with iridium 192 (or with iodine 125 or cobalt 60 etc.). Positioning of the radioactive sources can be interstitial, intracavitary (endoluminal), or onto skin surface mold. The implant can be removable or permanent (iodine 125).

     
  2.  2. 

    Contact X-Ray 50 kVp brachytherapy (CXB) for accessible and limited lesions (skin, intracavitary, intraoperative).

     

References

  1. 1.
    Appelt AL, Ploen J, Vogelius JR et al (2013) Radiation dose-response model for locally advanced rectal cancer after preoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys 85:74–80CrossRefPubMedGoogle Scholar
  2. 2.
    Appelt A, Vogelius IR, Ploen J et al (2014) Long-term results of a randomized trial in locally advanced rectal cancer: no benefit from adding a brachytherapy boost. In t J Radiat Oncol Biol Phys 90:110–118CrossRefGoogle Scholar
  3. 3.
    Appelt AL, Ploen J, Harling H, Jensen FS et al (2015) High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol 16(8):919–927. https://doi.org/10.1016/S1470-2045(15)00120-5
  4. 4.
    Aumock A, Birnbaum EH, Fleshman JW et al (2001) Treatment of rectal adenocarcinoma with endocavitary and external beam radiotherapy: results for 199 patients with localized tumors. Int J Radiat Oncol Biol Phys 51(2):363–370CrossRefPubMedGoogle Scholar
  5. 5.
    Gérard JP, Chapet O, Romestaing P et al (2000) Local excision and adjuvant radiotherapy for rectal adenocarcinoma T1-2 N0. Gastroenterol Clin Biol 24(4):430–435PubMedGoogle Scholar
  6. 6.
    Gerard JP, Romestaing P, Chapet O (2003) Radiotherapy alone in the curative treatment of rectal carcinoma. Lancet Oncol 4(3):158–166CrossRefPubMedGoogle Scholar
  7. 7.
    Gerard JP, Chapet O, Nemoz C et al (2004) Improved sphincter preservation in low rectal cancer with high-dose preoperative radiotherapy: the Lyon R96-02 randomized trial. J Clin Oncol 22(12):2404–2409CrossRefPubMedGoogle Scholar
  8. 8.
    Gerard JP, Frin AC, Doyen J et al (2014) Organ preservation in rectal adenocarcinoma T2-T3 Nx M0. Historical overview of the Lyon Sud-nice experience using contact X-ray brachytherapy and external beam radiotherapy for 120 patients. Acta Oncol 54:545–555PubMedGoogle Scholar
  9. 9.
    Ortholan C, Romestaing P, Chapet O, Gerard JP (2012) Correlation in rectal cancer between clinical tumor response after neoadjuvant radiotherapy and sphincter or organ preservation : 10-yaer results of the Lyon R 96-02 randomized trial. Int J Radiat Oncol Biol Phys 83:e165–e171CrossRefPubMedGoogle Scholar
  10. 10.
    Papillon J (1975) Intracavitary irradiation of early rectal cancer for cure. A series of 186 cases. Cancer 36(2):696–701CrossRefPubMedGoogle Scholar
  11. 11.
    Papillon J, Montbarbon JF, Gerard JP et al (1989) Interstitial curietherapy in the conservative treatment of anal and rectal cancers. Int J Radiat Oncol Biol Phys 17(6):1161–1169CrossRefPubMedGoogle Scholar
  12. 12.
    Sun Myint A, Grieve RJ, McDonald AC (2007) Combined modality treatment of early rectal cancer: the UK experience. Clin Oncol (R Coll Radiol) 19(9):674–681CrossRefGoogle Scholar
  13. 13.
    Sun Myint A, Mukhopadhyay T, Ramani VS et al (2010) Can increasing the dose of radiation by HDR brachytherapy boost following preoperative chemoradiotherapy for advanced rectal cancer improve surgical outcome. Color Dis 12(suppl 2):30–36CrossRefGoogle Scholar
  14. 14.
    Sun MA (2013) Contact radiotherapy for elderly patients with early low rectal cancers. Br J Hosp Med (Lond) 74:391–396CrossRefGoogle Scholar
  15. 15.
    Vuong T, Richard C, Niazi T (2010) High dose rate endorectal brachytherapy for curable rectal cancer. Semin Colon Rect Surg 21:115–119CrossRefGoogle Scholar
  16. 16.
    Vuong T, Niazi T, Strojan G, Thebault J, Sym A, Deblois F, Devic S (2015) High dose rate brachytherapy. A fifteen-year experience. Challenges and opportunities from neoadjuvant to curative modality for rectal cancer. Brachyther Biol 116(1):Abstract # 12Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Jean Pierre Gérard
    • 1
  • Té Vuong
    • 2
  • Jérome Doyen
    • 1
  • Arthur Sun Myint
    • 3
  1. 1.Department of Radiotherapy-OncologyCentre Antoine-LacassagneNiceFrance
  2. 2.Jewish General Hospital, Mc Gill UniversityMontrealCanada
  3. 3.Papillon Suite; Clatterbridge Cancer CenterWirralUK

Personalised recommendations