Skip to main content

What Are the Dose-Volume Constraints for Long-Course Radiochemotherapy to Apply for IMRT?

  • Chapter
  • First Online:
Multidisciplinary Management of Rectal Cancer

Abstract

Preoperative radiochemotherapy (RCT) has been successfully adopted to reduce local recurrence rates in locally advanced rectal cancer. This benefit however has to be balanced against the acute and late side effects, of which radiation enteritis due to radiotherapy (RT) induced small bowel injury is the major source. A multitude of factors are influencing the tolerance of small bowel to radiation, including diabetes mellitus, pelvic inflammatory disease, prior abdominal or pelvic surgery, and the administration of concurrent chemotherapy. The major factors however are RT related and include mainly the total radiation dose and the volume of irradiated small bowel. Despite well-accepted and implemented measures such as distention of the urinary bladder, the use of the prone position, and a belly-board technique, the irradiated volume of small bowel can be reduced significantly only by using sophisticated forms of conformal RT such as intensity-modulated RT (IMRT), where geometrically shaped fields and varying intensities within the shaped field create a conformal dose distribution that tightly matches the target volume. Considering the concave shaped form of the planning target volume (PTV) with the small bowel and bladder lying in the middle, preoperative RT of rectal cancer represents a real challenge for IMRT. Dose-volume constraints have been of little relevance for 3D-conformal RT (3D-CRT) as the planner is configuring a variety of beams, wedges, and beamweights to end up in a suitable plan (called “forward planning”). In contrast, the complexity of IMRT requires the inverse and allows clinicians to specify dose-volume constraints to PTV as well as critical organs at risk (OAR) before the optimization is initiated (“inverse planning”). The following section proposes dose-volume constraints for the OARs in preoperative RT of rectal cancer based on available dose-response relationships (Table 24.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Baglan KL, Frazier RC, Yan D et al (2002) The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys 52:176–183

    Article  PubMed  Google Scholar 

  2. Robertson JM, Lockman D, Yan D et al (2008) The dose-volume relationship of small bowel irradiation and acute grade 3 diarrhea during chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 70:413–418

    Article  CAS  PubMed  Google Scholar 

  3. Tho LM, Glegg M, Paterson J et al (2006) Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: investigating dose-volume relationships and role for inverse planning. Int J Radiat Oncol Biol Phys 66:505–513

    Article  PubMed  Google Scholar 

  4. Gunnlaugsson A, Kjellen E, Nilsson P et al (2007) Dose-volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer. Acta Oncol 46:937–944

    Article  CAS  PubMed  Google Scholar 

  5. Robertson JM, Söhn M, Yan D (2010) Predicting grade 3 acute diarrhea during radiation therapy for rectal cancer using a cutoff-dose logistic regression normal tissue complication probability model. Int J Radiat Oncol Biol Phys 77:66–72

    Article  PubMed  Google Scholar 

  6. Yang TJ, Oh JH, Son CH et al (2013) Predictors of acute gastrointestinal toxicity during pelvic chemoradiotherapy in patients with rectal cancer. Gastrointest Cancer Res 6:129–136

    PubMed  PubMed Central  Google Scholar 

  7. Roeske JC, Bonta D, Mell LK et al (2003) A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity-modulated whole-pelvic radiation therapy. Radiother Oncol 69:201–207

    Article  PubMed  Google Scholar 

  8. Devisetty K, Mell LK, Salama JK et al (2009) A multi-institutional acute gastrointestinal toxicity analysis of anal cancer patients treated with concurrent intensity-modulated radiation therapy (IMRT) and chemotherapy. Radiother Oncol 93:298–301

    Article  PubMed  Google Scholar 

  9. Reis T, Khazzaka E, Welzel G et al (2015) Acute small-bowel toxicity during neoadjuvant combined radiochemotherapy in locally advanced rectal cancer: determination of optimal dose-volume cut-off value predicting grade 2–3 diarrhoea. Radiat Oncol 10:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Letschert JG, Lebesque JV, de Boer RW et al (1990) Dose-volume correlation in radiation-related late small-bowel complications: a clinical study. Radiother Oncol 18:307–320

    Article  CAS  PubMed  Google Scholar 

  11. Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:S10–S19

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Ridder M, Tournel K, Van Nieuwenhove Y et al (2008) Phase II study of preoperative helical tomotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 70:728–734

    Article  PubMed  Google Scholar 

  13. Engels B, Platteaux N, Van den Begin R et al (2014) Preoperative intensity-modulated and image-guided radiotherapy with a simultaneous integrated boost in locally advanced rectal cancer: report on late toxicity and outcome. Radiother Oncol 110:155–159

    Article  PubMed  Google Scholar 

  14. Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351:1731–1740

    Article  CAS  PubMed  Google Scholar 

  15. Appelt AL, Bentzen SM, Jakobsen A et al (2015) Dose-response of acute urinary toxicity of long-course preoperative chemoradiotherapy for rectal cancer. Acta Oncol 54:179–186

    Article  CAS  PubMed  Google Scholar 

  16. Engels B, Tournel K, Everaert H et al (2012) Phase II study of preoperative helical tomotherapy with a simultaneous integrated boost for rectal cancer. Int J Radiat Oncol Biol Phys 83:142–148

    Article  PubMed  Google Scholar 

  17. Baxter NN, Habermann EB, Tepper JE et al (2005) Risk of pelvic fractures in older women following pelvic irradiation. JAMA 294:2587–2593

    Article  CAS  PubMed  Google Scholar 

  18. Holm T, Singnomklao T, Rutqvist LE et al (1996) Adjuvant preoperative radiotherapy in patients with rectal carcinoma: adverse effects during long term follow-up of two randomized trials. Cancer 78:968–976

    Article  CAS  PubMed  Google Scholar 

  19. Herman MP, Kopetz S, Bhosale PR et al (2009) Sacral insufficiency fractures after preoperative chemoradiation for rectal cancer: incidence, risk factors, and clinical course. Int J Radiat Oncol Biol Phys 74:818–823

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim HJ, Boland PJ, Meredith DS et al (2012) Fractures of the sacrum after chemoradiation for rectal carcinoma: incidence, risk factors, and radiographic evaluation. Int J Radiat Oncol Biol Phys 84:694–699

    Article  PubMed  Google Scholar 

  21. Tunio M, Al Asiri M, Bayoumi Y et al (2014) Lumbosacral plexus delineation, dose distribution, and its correlation with radiation-induced lumbosacral plexopathy in cervical cancer patients. Onco Targets Ther 8:21–27

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang TJ, Oh JH, Apte A et al (2014) Clinical and dosimetric predictors of acute hematologic toxicity in rectal cancer patients undergoing chemoradiotherapy. Radiother Oncol 113:29–34

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mell LK, Schomas DA, Salama JK et al (2008) Association between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 70:1431–1437

    Article  PubMed  Google Scholar 

  24. Mell LK, Tiryaki H, Ahn KH et al (2008) Dosimetric comparison of bone marrow-sparing intensity-modulated radiotherapy versus conventional techniques for treatment of cervical cancer. Int J Radiat Oncol Biol Phys 71:1504–1510

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark De Ridder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Engels, B., De Ridder, M. (2018). What Are the Dose-Volume Constraints for Long-Course Radiochemotherapy to Apply for IMRT?. In: Valentini, V., Schmoll, HJ., van de Velde, C. (eds) Multidisciplinary Management of Rectal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-43217-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43217-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43215-1

  • Online ISBN: 978-3-319-43217-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics