How Can Radiomics Improve Clinical Choices?

  • Elisa Meldolesi
  • Nicola Dinapoli
  • Roberto Gatta
  • Andrea Damiani
  • Vincenzo Valentini
  • Alessandra Farchione


Over the past decade, we have witnessed a great expansion of the use and the role of medical imaging technologies in clinical oncology from a primarily diagnostic, qualitative tool to include a central role in the context of individualized medicine, with a dominant quantitative value [1].


  1. 1.
    Lambin P, van Stiphout RGPM, Starmans MHW, Rios-Velazquez E, Nalbantov G, Aerts HJWL et al (2013) Predicting outcomes in radiation oncology – multifactorial decision support systems. Nat Rev Clin Oncol [Internet], Nature Publishing Group 10(1):27–40. [cited 2014 Mar 26]. Available from:
  2. 2.
    O’Connor JPB, Rose CJ, Waterton JC, Carano RAD, Parker GJM, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res [Internet] 21(2):249–57. [cited 2016 Mar 23]. Available from:
  3. 3.
    Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW, Graham MM et al (2012) Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn Reson Imaging [Internet] 30(9):1301–12. [cited 2016 Mar 23]. Available from:
  4. 4.
    Levy MA, Freymann JB, Kirby JS, Fedorov A, Fennessy M, Eschrich SA et al (2013) NIH public access. Magn Reson Imaging 30(9):1249–1256CrossRefGoogle Scholar
  5. 5.
    Clarke LP, Nordstrom RJ, Zhang H, Tandon P, Zhang Y, Redmond G et al (2014) The quantitative imaging network: NCI’s historical perspective and planned goals. Transl Oncol [Internet] 7(1):1–4. [cited 2016 Mar 24]. Available from:
  6. 6.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med [Internet] 366(10):883–92. [cited 2014 Aug 6]. Available from:
  7. 7.
    Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology [Internet] 269(1):8–15. [cited 2016 Mar 23]. Available from:
  8. 8.
    Alic L, Niessen WJ, Veenland JF (2014) Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS One [Internet] 9(10):e110300. [cited 2016 Mar 3]. Available from:
  9. 9.
    Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging [Internet], Elsevier Inc. 30(9):1234–48. [cited 2014 Mar 28]. Available from:
  10. 10.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer [Internet] 48(4):441–6. [cited 2014 Mar 26]. Available from:
  11. 11.
    Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology [Internet] 278(2):563–77. [cited 2016 Feb 12]. Available from:
  12. 12.
    Alobaidli S, McQuaid S, South C, Prakash V, Evans P, Nisbet A (2014) The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br J Radiol [Internet] 87(1042):20140369. [cited 2016 Mar 24]. Available from:
  13. 13.
    Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging [Internet] 3(6):573–89. [cited 2016 Feb 19]. Available from:
  14. 14.
    Ganeshan B, Miles KA (2013) Quantifying tumour heterogeneity with CT. Cancer Imaging [Internet] 13:140–9. [cited 2016 Mar 25]. Available from:
  15. 15.
    Miles KA, Ganeshan B, Hayball MP (2013) CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging [Internet] 13(3):400–6. [cited 2016 Mar 28]. Available from:
  16. 16.
    Miles KA, Ganeshan B, Rodriguez-Justo M, Goh VJ, Ziauddin Z, Engledow A et al (2014) Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med [Internet] 55(3):386–91. [cited 2016 Mar 28]. Available from:
  17. 17.
    Song B, Zhang G, Lu H, Wang H, Zhu W, Pickhardt JP et al (2014) Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography. Int J Comput Assist Radiol Surg [Internet]. [cited 2016 Mar 28]. Available from:
  18. 18.
    Cui C, Cai H, Liu L, Li L, Tian H, Li L (2011) Quantitative analysis and prediction of regional lymph node status in rectal cancer based on computed tomography imaging. Eur Radiol [Internet] 21(11):2318–25. [cited 2016 Mar 28]. Available from:
  19. 19.
    Ganeshan B, Miles KA, Young RCD, Chatwin CR (2007) Hepatic enhancement in colorectal cancer: texture analysis correlates with hepatic hemodynamics and patient survival. Acad Radiol [Internet] 14(12):1520–30. [cited 2016 Mar 28]. Available from:
  20. 20.
    Ganeshan B, Miles KA, Young RCD, Chatwin CR (2007) Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol [Internet] 62(8):761–8. [cited 2016 Mar 28]. Available from:
  21. 21.
    Rao S-X, Lambregts DM, Schnerr RS, van Ommen W, van Nijnatten TJ, Martens MH et al (2014) Whole-liver CT texture analysis in colorectal cancer: does the presence of liver metastases affect the texture of the remaining liver? United Eur Gastroenterol J [Internet] 2(6):530–8. [cited 2016 Mar 28]. Available from:
  22. 22.
    Ganeshan B, Burnand K, Young R, Chatwin C, Miles K (2011) Dynamic contrast-enhanced texture analysis of the liver: initial assessment in colorectal cancer. Invest Radiol [Internet] 46(3):160–8. [cited 2016 Mar 28]. Available from:
  23. 23.
    Ganeshan B, Miles KA, Young RCD, Chatwin CR (2009) Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol [Internet] 70(1):101–10. [cited 2016 Mar 28]. Available from:
  24. 24.
    Ganeshan B, Miles KA, Young RCD, Chatwin CR (2007) In search of biologic correlates for liver texture on portal-phase CT. Acad Radiol [Internet] 14(9):1058–68. [cited 2016 Mar 28]. Available from:
  25. 25.
    Lubner MG, Stabo N, Lubner SJ, Del Rio AM, Song C, Halberg RB et al (2015) CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging [Internet], Springer US 40(7):2331–7. [cited 2016 Mar 26]. Available from:
  26. 26.
    Valentini V, van Stiphout RGPM, Lammering G, Gambacorta MA, Barba MC, Bebenek M et al (2015) Selection of appropriate end-points (pCR vs 2yDFS) for tailoring treatments with prediction models in locally advanced rectal cancer. Radiother Oncol [Internet] 114(3):302–9. [cited 2016 Apr 1]. Available from:
  27. 27.
    De Cecco CN, Ganeshan B, Ciolina M, Rengo M, Meinel FG, Musio D et al (2015) Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol [Internet] 50(4):239–45. [cited 2016 Apr 4]. Available from:
  28. 28.
    Bundschuh RA, Dinges J, Neumann L, Seyfried M, Zsótér N, Papp L et al (2014) Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med [Internet] 55(6):891–7. [cited 2016 Apr 4]. Available from:
  29. 29.
    Bang J-I, Ha S, Kang S-B, Lee K-W, Lee H-S, Kim J-S et al (2016) Prediction of neoadjuvant radiation chemotherapy response and survival using pretreatment [(18)F]FDG PET/CT scans in locally advanced rectal cancer. Eur J Nucl Med Mol Imaging [Internet] 43(3):422–31. [cited 2016 Apr 4]. Available from:
  30. 30.
    O’Connor JPB, Rose CJ, Jackson A, Watson Y, Cheung S, Maders F et al (2011) DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer [Internet] 105(1):139–45. [cited 2016 Apr 4]. Available from:
  31. 31.
    Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology [Internet] 266(1):177–84. [cited 2016 Apr 5]. Available from:
  32. 32.
    Miles KA, Ganeshan B, Griffiths MR, Young RCD, Chatwin CR (2009) Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology [Internet] 250(2):444–52. [cited 2016 Apr 5]. Available from:
  33. 33.
    Doroshow JH, Kummar S (2014) Translational research in oncology – 10 years of progress and future prospects. Nat Rev Clin Oncol [Internet], Nature Publishing Group 11(11):649–62. [cited 2016 Apr 6].Available from:

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Elisa Meldolesi
    • 1
  • Nicola Dinapoli
    • 1
  • Roberto Gatta
    • 1
  • Andrea Damiani
    • 1
  • Vincenzo Valentini
    • 1
  • Alessandra Farchione
    • 2
  1. 1.Department of Radiation Oncology, Università Cattolica Sacro CuoreFondazione Policlinico Universitario A.Gemelli, Largo A. Gemelli 8RomeItaly
  2. 2.Department of Diagnostic ImagingUniversità Cattolica Sacro Cuore, Fondazione Policlinico Universitario A.GemelliRomeItaly

Personalised recommendations