Skip to main content

First Steps to a Theory of Quantum Gravity

  • Chapter
  • First Online:
LQG for the Bewildered

Abstract

As discussed in the previous section, we wish to attempt to canonically quantise GR, which means turning the Hamiltonian, diffeomorphism and Gauss constraints into operators and replacing Poisson brackets with commutation relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to mention one aspect of background independence that is not implemented, a priori in the LQG framework. This is the question of the topological degrees of freedom of geometry. On general grounds, one would expect any four dimensional theory of quantum gravity to contain non-trivial topological excitations at the quantum level. Classically, these excitations would correspond to defects which would lead to deviations from smoothness of any coarse-grained geometry.

  2. 2.

    For the detailed derivation of these constraints starting with the self-dual Lagrangian see for e.g. [2, Sect. 6.2]

  3. 3.

    The transformation to new variables, as implemented by most authors, including Barbero and Immirzi, does not involve changing the triad. In this case the Poisson brackets between the new variables picks up a factor of \( \gamma \). However if we transform the triad also, as is done here following [1], the factor of \( \gamma \) cancels out when taking the Poisson brackets.

References

  1. T. Thiemann, Introduction to Modern Canonical Quantum General Relativity (2001). arXiv:gr-qc/0110034

  2. J.D. Romano, Geometrodynamics vs. Connection Dynamics (1993). doi:10.1007/BF00758384. arXiv:gr-qc/9303032

  3. H. Kodama, Holomorphic wave function of the Universe. Phys. Rev. D 42, 2548–2565 (1990). doi:10.1103/PhysRevD.42.2548

  4. T. Jacobson, L. Smolin, Covariant action for Ashtekar’s form of canonical gravity. Class. Quantum Gravity 5(4), 583+ (1988). ISSN: 0264-9381. doi:10.1088/0264-9381/5/4/006

  5. J. Samuel, A lagrangian basis for Ashtekar’s reformulation of canonical gravity. Pramana 28(4), L429–L432 (1987). ISSN: 0304-4289. doi:10.1007/BF02847105

  6. F. Barbero, Real Ashtekar Variables for Lorentzian Signature Space-times (1994). arXiv:gr-qc/9410014

  7. F. Barbero, From Euclidean to Lorentzian General Relativity: The Real Way (1996). arXiv:gr-qc/9605066

  8. G. Immirzi, Real and Complex Connections for Canonical Gravity (1996). arXiv:gr-qc/9612030

  9. K. Krasnov, On the Constant that Fixes the Area Spectrum in Canonical Quantum Gravity (1997). arXiv:gr-qc/9709058

  10. A. Ashtekar et al., Quantum Geometry and Black Hole Entropy (1997). doi:10.1103/PhysRevLett.80.904. arXiv:gr-qc/9710007

  11. O. Dreyer, Quasinormal Modes, the Area Spectrum, and Black Hole Entropy (2002). arXiv:gr-qc/0211076

  12. M. Domagala, J. Lewandowski, Black Hole Entropy from Quantum Geometry (2004). arXiv:gr-qc/0407051

  13. T. Jacobson, Renormalization and Black Hole Entropy in Loop Quantum Gravity (2007). arXiv:0707.4026

  14. A. Majhi, Microcanonical Entropy of Isolated Horizon and the Barbero-Immirzi Parameter (2012). arXiv:1205.3487

  15. Daniele Pranzetti, Hanno Sahlmann, Horizon entropy with loop quantum gravity methods. Phys. Lett. B 746, 209–216 (2015). doi:10.1016/j.physletb.2015.04.070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. Perez, C. Rovelli, Physical effects of the Immirzi parameter in loop quantum gravity. Phys. Rev. D 73(4), 044013 (2006)

    Google Scholar 

  17. S.H.S. Alexander, D. Vaid, Gravity Induced Chiral Condensate Formation and the Cosmological Constant (2006). arXiv:hep-th/0609066

  18. S. Alexander, D. Vaid, A Fine Tuning Free Resolution of the Cosmological Constant Problem (2007). arXiv:hep-th/0702064

  19. C.-H. Chou, R.-S. Tung, H.-L. Yu, Origin of the Immirzi Parameter (2005). arXiv:gr-qc/0509028

  20. B. Broda, M. Szanecki, A relation between the Barbero-Immirzi parameter and the standard model. Phys. Lett. B 690(1), 87–89 (2010). ISSN: 03702693. doi:10.1016/j.physletb.2010.05.004. arXiv:1002.3041

  21. A. Randono, Generalizing the Kodama State I: construction, in ArXiv General Relativity and Quantum Cosmology e-prints (2006). arXiv:gr-qc/0611073

  22. A. Randono, Generalizing the Kodama State II: properties and physical interpretation, in ArXiv General Relativity and Quantum Cosmology e-prints (2006). arXiv:gr-qc/0611074

  23. A. Randono, In Search of Quantum de Sitter Space: Generalizing the Kodama State (2007)

    Google Scholar 

  24. S. Mercuri, From the Einstein-Cartan to the Ashtekar-Barbero canonical constraints, passing through the Nieh-Yan functional. Phys. Rev. D 77(2) (2008). ISSN: 1550-7998. doi:10.1103/physrevd.77.024036. arXiv:0708.0037

  25. G. Date, R.K. Kaul, S. Sengupta, Topological interpretation of Barbero-Immirzi parameter. Phys. Rev. D 79(4) (2008). ISSN: 1550-7998. doi:10.1103/physrevd.79.044008. arXiv:0811.4496

  26. S. Mercuri, Peccei-Quinn mechanism in gravity and the nature of the Barbero- Immirzi parameter. Phys. Rev. Lett. 103(8) (2009). ISSN: 0031-9007. doi:10.1103/PhysRevLett.103.081302. arXiv:arXiv:0902.2764

  27. J. Magueijo, D.M.T. Benincasa, Chiral Vacuum Fluctuations in Quantum Gravity (2010). arXiv:1010.3552

  28. M. Sadiq, A correction to the Immirizi parameter of SU(2) spin networks. Phys. Lett. B 741, 280–283 (2015). doi:10.1016/j.physletb.2015.01.004

    Article  Google Scholar 

  29. M. Sadiq, The Holographic Principle and the Immirzi Parameter of Loop Quantum Gravity (2015)

    Google Scholar 

  30. S. Alexandrov, On choice of connection in loop quantum gravity. Phys. Rev. D 65(2) (2005). ISSN: 0556-2821. doi:10.1103/physrevd.65.024011. arXiv:gr-qc/0107071

  31. J. Samuel, Is Barbero’s Hamiltonian Formulation a Gauge Theory of Lorentzian Gravity? (2000). arXiv:gr-qc/0005095

  32. W. Wieland, Complex Ashtekar Variables and Reality Conditions for Holst’s Action (2010). arXiv:1012.1738

  33. W. Wieland, Complex Ashtekar Variables, the Kodama State and Spinfoam Gravity (2011). arXiv:1105.2330

  34. E. Frodden et al., Black Hole Entropy from Complex Ashtekar Variables (2012). arXiv:1212.4060

  35. D. Pranzetti, Black Hole Entropy from KMS-States of Quantum Isolated Horizons (2013). arXiv:1305.6714

  36. J. Engle et al., Black Hole Entropy from an SU(2)-Invariant Formulation of Type I Isolated Horizons (2010). arXiv:1006.0634

  37. J. Engle, K. Noui, A. Perez, Black Hole Entropy and SU(2) Chern-Simons Theory (2009). arXiv:0905.3168

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Vaid .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaid, D., Bilson-Thompson, S. (2017). First Steps to a Theory of Quantum Gravity. In: LQG for the Bewildered. Springer, Cham. https://doi.org/10.1007/978-3-319-43184-0_5

Download citation

Publish with us

Policies and ethics