Skip to main content
  • 1090 Accesses

Abstract

The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998)

    Article  Google Scholar 

  2. D. Hisamoto et al., FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)

    Article  Google Scholar 

  3. M. Bohr, Technology Insight: 14 nm Process Technology—Opening New Horizons, Intel Developer Forum 2014, San Francisco

    Google Scholar 

  4. G. De Micheli, Synthesis and Optimization of Digital Circuits (McGraw-Hill Higher Education, United States, 1994)

    Google Scholar 

  5. J. Buchanan, The GDSII Stream Format, June 1996

    Google Scholar 

  6. S. Brown et al., Field-Programmable Gate Arrays, vol. 180 (Springer Science & Business Media, Heidelberg, 2012)

    Google Scholar 

  7. A. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure (Springer Science & Business Media, Heidelberg, 2011)

    Google Scholar 

  8. E. Clarke, J.M. Wing, Formal methods: state of the art and future directions. ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

    Article  Google Scholar 

  9. F. Krohm, The Use of Random Simulation in Formal Verification. IEEE International Conference on Computer Design (1996)

    Google Scholar 

  10. R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35(8), 677–691 (1986)

    Google Scholar 

  11. A. Biere et al. (ed.), Handbook of Satisfiability, vol. 185 (IOS Press, Amsterdam, 2009)

    Google Scholar 

  12. R.L. Rudell, A. Sangiovanni-Vincentelli, Multiple-valued minimization for PLA optimization. IEEE Trans. CAD 6(5), 727–750 (1987)

    Article  Google Scholar 

  13. R.K. Brayton, G.D. Hachtel, A.L. Sangiovanni-Vincentelli, Multilevel logic synthesis. Proc. IEEE 78(2), 264–300 (1990)

    Article  Google Scholar 

  14. L. Amaru, P.-E. Gaillardon, G. De Micheli, Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization. Design Automation Conference (DAC) (CA, USA, San Francisco, 2014)

    Google Scholar 

  15. M. Ciesielski, C. Yu, W. Brown, D. Liu, A. Rossi, Verification of Gate-level Arithmetic Circuits by Function Extraction. ACM Design Automation Conference (DAC-2015) (2015)

    Google Scholar 

  16. L. Amaru, P.-E. Gaillardon, R. Wille, G. De Micheli, Exploiting Inherent Characteristics of Reversible Circuits for Faster Combinational Equivalence Checking, DATE’16

    Google Scholar 

  17. K. Bernstein et al., Device and architecture outlook for beyond CMOS switches. Proc. IEEE 98(12), 2169–2184 (2010)

    Article  Google Scholar 

  18. T. Ernst, Controlling the polarity of silicon nanowire transistors. Science 340, 1414 (2013)

    Article  Google Scholar 

  19. Y.-M Lin et al., High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005)

    Google Scholar 

  20. H. Yang et al., Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140 (2012)

    Article  Google Scholar 

  21. S.-L. Li et al., Complementary-like graphene logic gates controlled by electrostatic doping. Small 7(11), 1552–1556 (2011)

    Article  Google Scholar 

  22. S. Iba et al., Control of threshold voltage of organic field-effect transistors with double-gate structures. Appl. Phys. Lett. 87(2), 023509 (2005)

    Article  Google Scholar 

  23. D. Lee et al., Combinational logic design using six-terminal NEM relays. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(5), 653–666 (2013)

    Article  Google Scholar 

  24. M. Spencer et al., Demonstration of integrated micro-electro-mechanical relay circuits for VLSI applications. IEEE J. Solid-State Circuits 46(1), 308–320 (2011)

    Article  Google Scholar 

  25. T. Toffoli, Reversible computing, in Automata, Languages and Programming, ed. by W. de Bakker, J. van Leeuwen (Springer, Heidelberg, 1980), p. 632. (Technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci)

    Google Scholar 

  26. T. Schneider et al., Realization of spin-wave logic gates. Appl. Phys. Lett. 92(2), 022505 (2008)

    Article  Google Scholar 

  27. A. Khitun, K.L. Wang, Nano scale computational architectures with spin wave bus. Superlattices Microstruct. 38(3), 184–200 (2005)

    Article  Google Scholar 

  28. A. Khitun et al., Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 034306 (2011)

    Google Scholar 

  29. E. Linn, R. Rosezin, C. Kügeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403 (2010)

    Google Scholar 

  30. E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, R. Waser, Beyond von Neumann–logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(305205) (2012)

    Google Scholar 

  31. S. Miryala et al., Exploiting the Expressive Power of Graphene Reconfigurable Gates via Post-Synthesis Optimization, in Proceedings of the GLVSLI’15

    Google Scholar 

  32. I. Amlani et al., Digital logic gate using quantum-dot cellular automata. Science 284(5412), 289–291 (1999)

    Article  Google Scholar 

  33. L. Wei et al., Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Lett. 13(6), 2980–2988 (2013)

    Google Scholar 

  34. L. Amaru, P.-E. Gaillardon, S. Mitra, G. De Micheli, New logic synthesis as nanotechnology enabler, in Proceedings of the IEEE (2015)

    Google Scholar 

  35. A. Mishchenko, S. Chatterjee, R.K. Brayton, DAG-aware AIG rewriting a fresh look at combinational logic synthesis, in Proceedings of the 43rd Annual Design Automation Conference, pp. 532–535 (2006)

    Google Scholar 

  36. A. Mishchenko et al., Delay optimization using SOP balancing, in Proceedings of the ICCAD (2011)

    Google Scholar 

  37. A. Mishchenko at al., Using simulation and satisfiability to compute flexibilities in Boolean networks. IEEE TCAD 25(5), 743–755 (2006)

    Google Scholar 

  38. O. Coudert, J.C. Madre, A unified framework for the formal verification of sequential circuits. Proceedings of the ICCAD (1990)

    Google Scholar 

  39. O. Coudert, C. Berthet, J.C. Madre, Verification of sequential machines using Boolean functional vectors, in Proceedings of the International Workshop on Applied Formal Methods for Correct VLSI Design (1989)

    Google Scholar 

  40. A. Mishchenko et al., Improvements to combinational equivalence checking. IEEE/ACM International Conference on Computer-Aided Design, ICCAD’06 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Gaetano Amaru .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amaru, L.G. (2017). Introduction. In: New Data Structures and Algorithms for Logic Synthesis and Verification. Springer, Cham. https://doi.org/10.1007/978-3-319-43174-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43174-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43173-4

  • Online ISBN: 978-3-319-43174-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics