Skip to main content

Squalene and Skin Barrier Function: From Molecular Target to Biomarker of Environmental Exposure

  • Chapter
  • First Online:

Abstract

The human skin naturally faces an aerial oxidative environment . The environment presents however a variable oxidative potential since enhanced by solar rays (UV, Visible) possibly combined to aerial-borne pollutants that most often act as catalysts in the different oxidative pathways. The poly-unsaturated human sebum highly present on the upper parts of the body (face, torso) is therefore a natural “receptor” of these oxidative actions. Comprised at 10–20 % within sebum, Squalene (C30H50) is not only specific to human sebum but its 6 double bonds make it a highly sensitive molecule towards various forms of Reactive Oxygen Species, singlet oxygen included, leading to different per-oxidized by-products. The latter thus appear as natural bio-markers of most oxidative actions upon the cutaneous tissue. Some mechanisms can easily be modelled in vitro, thereby demonstrating the influences of UVA rays, cigarette smoke, particulate matters or some porphyrins that are synthesized by the resident skin flora. These models allow the structures of various forms of squalene peroxides to being determined and to quantify the quenching properties of some known anti-oxidants (Carotenoids, Vitamin E). These chains of events were logically traced in vivo, by comparing the contents of Squalene and Vitamin E in the sebum of subjects living in differently polluted but close geographical locations. The oxidized state of Squalene then represents a reliable biomarker of most oxidative events induced by various environmental factors. Their possible biological impacts upon the skin physiology, which greatly remain to being documented, are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Basu Mallick C et al (2013) The light skin allele of SCL24A5 in South Asians and Europeans shares identity by descent. PLoS Genet 9(11):e1003912

    Google Scholar 

  • Battie C et al (2014) New insights in photoaging, UVA induced damage and skin types. Exp Dermatol 1:7–12

    Article  Google Scholar 

  • Baviera G et al (2014) Microbiota in healthy skin and in atopic eczema. Biomed Res Int. doi:10.1155/2014/436921

    Google Scholar 

  • Bernard BA, Saint-Léger D (2000) Sécrétion sébacée. Encyclopédie Médico-chirurgicale, Cosmétologie et Dermatologie esthétique, 50-020-F-10, 1–6

    Google Scholar 

  • Chapman AC (1923) Spinacene: its oxidation and decomposition. J Chem Soc 123, 769

    Google Scholar 

  • Chardon A, Cretois I, Hourseau C (1991) Skin color typology and suntanning pathways. Int J Cosm Sci 13(4):191–208

    Article  CAS  Google Scholar 

  • Chiba K et al (1999) Skin roughness and wrinkle formation induced by repeated applications of squalene monohydroperoxide to the hairless mouse. Exp Dermatol 8(6):471–479

    Google Scholar 

  • Chiba K et al (2000) Comedogenicity of squalene monohydroperoxide in the skin after topical application. J Toxicol Sci 25(2):77–83

    Article  CAS  PubMed  Google Scholar 

  • Chiba K et al (2001) Changes in the levels of glutathione after cellular and cutaneous damage induced by squalene monohydroperoxide. J Biochem Mol Toxicol 15(3):150–158

    Article  CAS  PubMed  Google Scholar 

  • Chiba K, Kawakami K, Sone T, Onoue M (2003) Characteristics of skin wrinkling and dermal changes induced by repeated applications of squalene monohydroperoxide to hairless mouse skin. Skin Pharmacol Appl Skin Physiol 16(4):242–251

    Article  CAS  PubMed  Google Scholar 

  • Colin C, Boussouira B, Bernard D, Moyal D, Nguyen QL (1994) Non invasive methods of evaluation of oxidative stress induced by low doses of ultra violet in humans. 18th IFSCC Congress report, pp 51–72

    Google Scholar 

  • Collin C et al (2006) Protective effects of taurine on human hair follicle grown in vitro. Int J Cosmet Sci 28(4):289–298

    Article  CAS  PubMed  Google Scholar 

  • Cornelius CE, Ludwig GD (1967) Red fluorescence for comedones: production of porphyrins by corynebacterium acnes. J Invest Dermatol 49:368–370

    Article  CAS  PubMed  Google Scholar 

  • Cottrez F et al (2015) Genes specifically modulated in sensitized skins allow the detection of sensitizers in a reconstructed human skin model. Development of the SENS-IS assay. Toxicol in Vitro 29(4):787–802

    Google Scholar 

  • De Luca C, Valacchi G (2010) Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm. doi:10.1155/2010/321494

    Google Scholar 

  • Ding YS et al (2006) Determination of 14 polycyclic aromatic hydrocarbons in mainstream smoke from US brand and non-US brand cigarettes. Environ Sci Technol 40(4):1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Duval C et al (2012) Human skin model containing melanocytes: essential role of keratinocyte growth factor for constitutive pigmentation-functional response to α-melanocyte stimulating hormone and forskolin. Tissue Eng Part C Methods 18(12):947–957

    Article  CAS  PubMed  Google Scholar 

  • Ekanayake Mudiyanselage S et al (2003) Ultraviolet A induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J Invest Dermatol 120(6):915–923

    Google Scholar 

  • Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125:183–200

    CAS  PubMed  Google Scholar 

  • Fitzpatrick TB (1988) The validity and practicability of sun-reactive skin type I through VI. Arch Dermatol 124:869–871

    Article  CAS  PubMed  Google Scholar 

  • Fourtanier A et al (2006) Protection of skin biological targets by different types of sunscreens. Photodermatol Photoimmunol Photomed 22(1):22–32

    Google Scholar 

  • Fuhrhop JH et al (1980) Metalloporphyrin catalyzed oxidation 3. Epoxidation and aldehyde formation by carbon bond cleavage in squalene. J Mol Catal 7:257–266

    Article  CAS  Google Scholar 

  • Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadgraft J (2001) Skin, the final frontier. Int J Pharm 224:1–18

    Article  CAS  PubMed  Google Scholar 

  • Haniffa M et al (2015) Human skin dendritic cells in health and disease. J Dermatol Sci 77(2):85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosaka S, Obuki M, Nakajima J et al (2005) Comparative study of antioxidants as quenchers or scavengers of reactive oxygen species based on the quenching of MCLA-dependent chemiluminescence. Luminescence 20(6):419–427

    Article  CAS  PubMed  Google Scholar 

  • Jablonski NG (2004) The evolution of human skin and skin color. Annu Rev Anthropol 33:585–623

    Article  Google Scholar 

  • Jablonski NG (2011) Why humans come in colors. Anthro Notes 32:7–10

    Google Scholar 

  • Jablonski NG, Chaplin G (2013) Epidermal pigmentation in the human lineage is an adaptation to ultraviolet radiation. J Hum Evol 65(5):671–675

    Article  PubMed  Google Scholar 

  • Leong W et al (1976) Polyene oxidation: the oxidation of squalene with singlet oxygen. J Rub Res Instit Malays 24:215–220

    Google Scholar 

  • Lindholm JS, Downing DT (1980) Occurrence of squalene in skin surface lipids of the otter, the beaver and the kinkajou. Lipids 15(12):1062–1063

    Article  CAS  PubMed  Google Scholar 

  • Lucock M et al (2014) Vitamin D, folate and potential early lifecycle environmental adult phenotypes. Evol Med Public Health 1:69–91

    Article  Google Scholar 

  • Marionnet C et al (2010) Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation. PLoS One, e12059. doi:10.1371/journal.pone.0012059

    Google Scholar 

  • Marionnet C et al (2012) Modulations of gene expression induced by daily ultraviolet light can be prevented by a broad spectrum sunscreen. J Photochem Photobiol 116:37–47

    Google Scholar 

  • Marionnet C et al (2014) Diversity of biological effects induced by long wave UVA rays (UVA1) in reconstructed skin. PLoS One, e105263. doi:10.1371/journal.pone.0105263

    Google Scholar 

  • Marples RR et al (1974) The microflora of the face and acne lesions. J Invest Dermatol 62(3):326–331

    Article  CAS  PubMed  Google Scholar 

  • Mikova R et al (2014) Newborn boys and girls differ in the lipid composition of vernix caseosa. PLoS One. doi:10.1371/journal.pone.0099173

    Google Scholar 

  • Miquel J, Quintanilha AT, Webber H (1989) Chemical and biochemical aspects of activated oxygen: singlet oxygen, superoxide anion and related species. In: Handbook of free radicals and antioxidants in biomedicine, vol 1. CRC press, Boca Raton, FL, USA

    Google Scholar 

  • Motoyoshi K (1983) Enhanced comedo formation in rabbit ear skin by squalene and oleic acid peroxides. Br J Dermatol 109:191–196

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides N (1974) Skin lipids: their biochemical uniqueness. Science 186(4158):19–26

    Article  CAS  PubMed  Google Scholar 

  • Ning Z, Cheung CS, Fu J, Liu MA, Schnell MA (2006) Experimental study of environmental tobacco smoke particles under actual indoor environment. Sci Total Environ 367:822–830

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QL et al (2015a) Consequence of urban pollution upon skin status. A controlled study in Shanghai area. Int J Cosmet Sci. doi:10.1111/ijcs12270

  • Nguyen QL et al (2015b) Evaluation of the impact of urban pollution on the quality of skin: a multicentre study in Mexico. Int J Cosmet Sci 37(3):329–338

    Google Scholar 

  • Novaes P et al (2010) The effects of chronic exposure to traffic derived air pollution on the ocular surface. Environ Res 110(4):372–374

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani M et al (2006) Peroxidated squalene induces the production of inflammatory mediators in Ha Cat keratinocytes: a possible role in acne vulgaris. J Invest Dermatol 126(11):2430–2437

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani M et al (2010) Lipid mediator in acne. Mediator of Inflammation, vol 2010. Hindawi Publishing Corporation, Article ID 858176

    Google Scholar 

  • Oyewole AO, Birch-Machin AA (2015) Sebum, inflammasomes and the skin: current concepts and future perspective. Exp Dermatol 24:651–654

    Article  CAS  PubMed  Google Scholar 

  • Patel CJ, Manrai AK (2015) Development of exposome correlation globes to map out environment-wide associations. Pac Symp Biocomput, 231–242, PMC4299925

    Google Scholar 

  • Petrick L, Dubowski Y (2009) Hetergeneous oxidation of squalene film by ozone under various indoor conditions. Indoor Air 19(5):381–391

    Article  CAS  PubMed  Google Scholar 

  • Pham DM et al (2015) Oxidation of squalene, a human skin lipid. A new and reliable marker of environmental pollution studies. Int J Cosmet Sci 37:357–365

    Article  CAS  PubMed  Google Scholar 

  • Picardo MS et al (1991) Squalene peroxides may contribute to ultraviolet light-induced immunological effects. Photodermatol Photoimmunol Photomed 8(3):105–110

    CAS  PubMed  Google Scholar 

  • Rawlings AV, Leyden JJ (2009) Skin mosturization, 2nd edn. Informa Healthcare, New York, USA

    Book  Google Scholar 

  • Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124:1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Ryu A et al (2009) Squalene as a target molecule in skin hyperpigmentation caused by singlet oxygen. Biol Pharm Bull 32(9):1504–1509

    Article  CAS  PubMed  Google Scholar 

  • Saint-Leger D et al (1982) A comparative study of refatting kinetics on the scalp and forehead. Br J Dermatol 106:669–675

    Article  CAS  PubMed  Google Scholar 

  • Saint-Leger D et al (1986) A possible role for squalene in the pathogenesis of acne. I. In vitro study of squalene oxidation. Br J Dermatol 114:535–542

    Article  CAS  PubMed  Google Scholar 

  • Tai-Long P et al (2015a) The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 78:51–60

    Google Scholar 

  • Tai-Long P, Pei Wen W, Aljuffali IA et al (2015b) The impact of urban pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 78:51–60

    Google Scholar 

  • Thibaut S et al (2003) Hair keratin pattern in human hair follicles grown in vitro. Exp Dermatol 12(2):160–164

    Google Scholar 

  • Thiele JJ et al (1997) Ozone depletes tocopherols and tocotrienols topically applied to murine skin. FEBS Lett 401:167–170

    Article  CAS  PubMed  Google Scholar 

  • Thiele JJ et al (1999) Sebaceous gland secretion is a major physiological route of vitamin E delivery to skin. J Invest Dermatol 113:1006–1010

    Article  CAS  Google Scholar 

  • Thiele JJ, Schroeter C, Hsieh SN, Podda M, Packer L (2001) The antioxidant network of the stratum corneum. Curr Probl Dermatol 29:26–42

    Article  CAS  PubMed  Google Scholar 

  • Thiele JJ et al (2003) Ultraviolet a induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J Invest Dermatol 120(6):915–922

    Google Scholar 

  • Tishkoff SA, Verelli B (2003) Patterns of human genetic diversity: implications for human evolutionary and disease. Annu Rev Genomics Hum Genet 4:293–340

    Article  CAS  PubMed  Google Scholar 

  • Tochio T et al (2009) Accumulation of lipid peroxide in the content of comedones may be involved in the progression of comedogenesis and inflammatory changes in comedones. J Cosmet Dermatol 8(2):152–158

    Article  PubMed  Google Scholar 

  • Visscher MO et al (2015) Newborn infant skin: physiology, development and care. Clin Dermatol 33(3):271–280

    Google Scholar 

  • Wieslander G, Norbäck D (2010) Ocular symptoms, tear film stability, nasal patency and biomarkers in nasal lavage in indoor painters in relation to emissions from water-based paint. Int Arch Occup Environ Health 83(7):733–741

    Google Scholar 

  • Wilde S et al (2014) Direct evidence for positive selection of skin, hair and eye pigmentation in Europeans during the last 5,000 years. PNAS 111(13):4832–4837

    Google Scholar 

  • Wilkinson DI (1969) Variability in composition of surface lipids. The problem of epidermal contribution. J Invest Dermatol 52(4):339–343

    Google Scholar 

  • Zheng M, Cass GR, Schauer JJ, Edgerton ES (2002) Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ Sci Technol 36(11):2361–2371

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to deeply thank Mr Q.L. Nguyen who initially paved their professional roads towards the mechanisms of lipid oxidization and to acknowledge the precious helps from Mrs D. Saint-Leger and B.A. Bernard in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boudiaf Boussouira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boussouira, B., Pham, D.M. (2016). Squalene and Skin Barrier Function: From Molecular Target to Biomarker of Environmental Exposure. In: Wondrak, G. (eds) Skin Stress Response Pathways. Springer, Cham. https://doi.org/10.1007/978-3-319-43157-4_2

Download citation

Publish with us

Policies and ethics