Skip to main content

Melioidosis: A Neglected Bacterial Infection Associated with High Mortality

  • Chapter
  • First Online:
  • 543 Accesses

Part of the book series: Neglected Tropical Diseases ((NTD))

Abstract

Melioidosis is a neglected tropical bacterial infection of international importance. Burkholderia pseudomallei, the bacterium that causes melioidosis, is widely distributed in soil and water in endemic areas which include many countries within the Oceania region. Infection can arise following percutaneous inoculation, inhalation or ingestion of B. pseudomallei. Clinical manifestations of melioidosis vary greatly, and the disease spectrum is believed to reflect the virulence and inoculating dose of the B. pseudomallei strain, the route of infection and host risk factors. Diabetes has been recognised as the single most common risk factor for melioidosis. The case mortality rate associated with melioidosis remains high, even in countries where it is well recognised. Treatment remains a challenge due to the inherent multidrug resistance of B. pseudomallei resulting in the need for systemic administration of antibiotics, followed by extended eradication therapy. Currently no safe, effective vaccine exists for melioidosis. Progress in the delivery of affordable prevention, detection and treatment modalities is reliant on improved understanding of basic concepts related to host-pathogen interactions, with particular relevance to the increased susceptibility of individuals with diabetes to B. pseudomallei infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Armstrong PK, Anstey NM, Kelly PM, Currie BJ, Martins N, Dasari P, Krause V (2005) Seroprevalence of Burkholderia pseudomallei in East Timorese refugees: implications for healthcare in East Timor. Southeast Asian J Trop Med Public Health 36(6):1496–1502

    CAS  PubMed  Google Scholar 

  • Ashdown LR (1979) An improved screening technique for isolation of Pseudomonas pseudomallei from clinical specimens. Pathology 11(2):293–297

    Article  CAS  PubMed  Google Scholar 

  • Baker AL, Ezzahir J, Gardiner C, Shipton W, Warner JM (2015) Environmental attributes influencing the distribution of Burkholderia pseudomallei in northern Australia. PLoS One 10(9):e0138953. doi:10.1371/journal.pone.0138953

    Article  PubMed  PubMed Central  Google Scholar 

  • Balandyte L, Brodard I, Frey J, Oevermann A, Abril C (2011) Ruminant rhombencephalitis-associated Listeria monocytogenes alleles linked to a multilocus variable-number tandem-repeat analysis complex. Appl Environ Microbiol 77:8325–8335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baral P, Utaisincharoen P (2012) Involvement of signal regulatory protein α, a negative regulator of Toll-like receptor signaling, in impairing the MyD88-independent pathway and intracellular killing of Burkholderia pseudomallei-infected mouse macrophages. Infect Immun 80:4223–4231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baral P, Utaisincharoen P (2013) Sterile-α- and armadillo motif-containing protein inhibits the TRIF-dependent downregulation of signal regulatory protein α to interfere with intracellular bacterial elimination in Burkholderia pseudomallei-infected mouse macrophages. Infect Immun 81:3463–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggins JB, Kang H-S, Ternei MA, DeShazer D, Brady SF (2014) The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. J Am Chem Soc 136:9484–9490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buddhisa S, Rinchai D, Ato M, Bancroft GJ, Lertmemongkolchai G (2015) Programmed death ligand 1 on Burkholderia pseudomallei-infected human polymorphonuclear neutrophils impairs T cell functions. J Immunol 194(9):4413–4421

    Article  CAS  PubMed  Google Scholar 

  • Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F (2011) Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLoS Pathog 7(12):e1002452. doi:10.1371/journal.ppat.1002452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanchamroen S, Kewcharoenwong C, Susaengrat W, Ato M, Lertmemongkolchai G (2009) Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect Immun 77(1):456–463

    Article  CAS  PubMed  Google Scholar 

  • Chapple SN, Price EP, Sarovich DS, McRobb E, Mayo M, Kaestli M, Spratt BG, Currie BJ (2015) Burkholderia pseudomallei genotype distribution in the Northern Territory, Australia. Am J Trop Med Hyg 94(1):68–72

    Article  PubMed  Google Scholar 

  • Cheng AC, West TE, Peacock SJ (2008) Surviving sepsis in developing countries. Crit Care Med 36(8):2487–2488

    Article  PubMed  Google Scholar 

  • Corkill MM, Cornere B (1987) Melioidosis: a new disease to New Zealand. N Z Med J 100:106–107

    CAS  PubMed  Google Scholar 

  • Cottew GS (1950) Melioidosis in sheep in Queensland. A description of the causal organism. Aust J Exp Biol Med Sci 28:677–683

    Article  CAS  PubMed  Google Scholar 

  • Crotty JM, Bromich AF, Quinn JV, Brotherton J (1963) Melioidosis in the Northern Territory: a report of two cases. Med J Aust 50(1):274–275

    PubMed  Google Scholar 

  • Cruz-Mignoni A, Hautbergue GM, Artymiuk PJ, Baker PJ, Bokori-Brown M, Chang CT, Dickman MJ, Essex-Sopresti A, Harding SV, Mahadi NM, Marshall LE, Mobbs GW, Mohamed R, Nathan S, Ngugi SA, Ong C, Ooi WF, Partridge LJ, Phillips HL, Raih MF, Ruzheinikov S, Sarkar-Tyson M, Sedelnikova SE, Smither SJ, Tan P, Titball RW, Wilson SA, Rice DW (2011) Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science 334:821–824

    Article  Google Scholar 

  • Currie B (1993) Melioidosis in Papua New Guinea: is it less common than in tropical Australia? Trans R Soc Trop Med Hyg 87:417

    Article  CAS  PubMed  Google Scholar 

  • Currie BJ, Jacups SP, Cheng AC, Fisher DA, Anstey NM, Huffam SE, Krause VL (2004) Melioidosis epidemiology and risk factors from a prospective whole-population study in Northern Australia. Trop Med Int Health 9:1167–1174

    Article  PubMed  Google Scholar 

  • Currie BJ, Dance DA, Cheng AC (2008) The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg 102(1):S1–S4

    Article  PubMed  Google Scholar 

  • Currie BJ, Ward L, Cheng AC (2010) The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis 4(11):e900. doi:10.1371/journal.pntd.0000900

    Article  PubMed  PubMed Central  Google Scholar 

  • Currie BJ (2015) Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment. Semin Respir Crit Care Med 36(1):111–125

    Article  PubMed  Google Scholar 

  • Currie BJ, Price EP, Mayo M, Kaestli M, Theobald V, Harrington I, Harrington G, Sarovich D (2015) Use of whole genome sequencing to link Burkholderia pseudomallei from air sampling to mediastinal melioidosis, Australia. Emerg Infect Dis 21(11):2052–2054

    Article  PubMed  PubMed Central  Google Scholar 

  • Dance DAB (2012) Melioidosis as an emerging infection. In: Ketheesan N (ed) Melioidosis: a century of observation and research. Elsevier Press, Amsterdam, pp 26–36

    Google Scholar 

  • Dance DA, Davis TM, Wattanagoon Y et al (1989) Acute suppurative parotitis caused by Pseudomonas pseudomallei in children. J Infect Dis 159:654–660

    Article  CAS  PubMed  Google Scholar 

  • DeShazer D, Brett PJ, Woods DE (1998) The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 30(5):1081–1100

    Article  CAS  PubMed  Google Scholar 

  • DeShazer D, Brett PJ, Burtnick MN, Woods DE (1999) Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J Bacteriol 181(15):4661–4664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deuble M, Aquilina C, Norton R (2013) Neurological melioidosis. Am J Trop Med Hyg 89(3):535–539

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelthaler DM, Bowers J, Schupp JA, Pearson T, Ginther J, Hornstra HM, Dale J, Stewart T, Sunenshine R, Waddell V, Levy C, Gillece J, Price LB, Contente T, Beckstrom-Sternberg SM, Blaney DD, Wagner DM, Mayo M, Currie BJ, Keim P, Tuanyok A (2011) Molecular investigations of a locally acquired case of melioidosis in Southern AZ, USA. PLoS Negl Trop Dis 5(10):e1347. doi:10.1371/journal.pntd.0001347

    Article  PubMed  PubMed Central  Google Scholar 

  • Essex-Lopresti AE, Boddey JA, Thomas R, Smith MP, Hartley MG, Atkins T, Brown NF, Tsang CH, Peak IR, Hill J, Beacham IR, Titball RW (2005) A type IV pilin, PilA, contributes to adherence of Burkholderia pseudomallei and virulence in vivo. Infect Immun 73(2):1260–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gal D, Mayo M, Smith-Vaughan H, Dasari P, McKinnon M, Jacups SP, Urquhart AI, Hassell M, Currie BJ (2004) Contamination of hand wash detergent linked to occupationally acquired melioidosis. Am J Trop Med Hyg 71(3):360–362

    PubMed  Google Scholar 

  • Gutierrez MG, Pfeffer TL, Warawa JM (2015) Type 3 secretion system cluster 3 is a critical virulence determinant for lung specific melioidosis. PLoS Negl Trop Dis 9(1):e3441, 10.137/journal.ptnd.0003441

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris P, Owens L, Ketheesan N, Norton R (2009) Melioidosis serology in North Queensland; clinical features that affect indirect haemagglutination assay responses. Clin Vaccine Immunol 16(6):924–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson KA, Govan BL, Walduck AK, Ketheesan N, Morris JL (2012) Impaired early cytokine responses at the site of infection in a murine model of type 2 diabetes and melioidosis comorbidity. Infect Immun 81(2):470–477

    Article  PubMed  Google Scholar 

  • Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N (2015) Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 144(2):171–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmaster AR, AuCoin D, Baccam P, Baggett HC, Baird R, Bhengsri S, Blaney DD, Brett JP, Brooks TJ, Brown KA, Chantratita N, Cheng AC, Dance DA, Decuypere S, Defenbaugh D, Gee JE, Houghton R, Jorakate P, Lertmemongkolchai G, Limmathurotsakul D, Merlin TL, Mukhopadhyay C, Norton R, Peacock SJ, Rolim DB, Simpson AJ, Steinmetz I, Stoddard RA, Stokes MM, Sue D, Tuanyok A, Whistler T, Wuthiekanun V, Walke HT (2015) Melioidosis diagnostic workshop, 2013. Emerg Infect Dis 21(2). doi:10.3201/eid2102.141045

  • Holden MTG, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PC, Parkhill J (2004) Genome plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101(39):14240–14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inglis TJ, Sousa AQ (2009) The public health implications of melioidosis. Braz J Infect Dis 13(1):59–66

    Article  PubMed  Google Scholar 

  • Inglis TJ, Mee B, Chang B (2001) The environmental microbiology of melioidosis. Rev Med Microbiol 12:13–20

    Article  Google Scholar 

  • Inglis TJ, Robertson T, Woods DE, Dutton N, Chang BJ (2003) Flagellum-mediated adhesion by Burkholderia pseudomallei precedes invasion of Acanthamoeba astronyxis. Infect Immun 71(4):2280–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenjaroen K, Chumseng S, Sumonwiriya M, Ariyaprasert P, Chantratita N, Sunyakumthorn P, Hongsuwan M, Wuthiekanun V, Fletcher HA, Teparrukkul P, Limmathurotsakul D, Day NP, Dunachie SJ (2015) T-cell responses are associated with survival in acute melioidosis patients. PLoS Negl Trop Dis 9(10):e0004152. doi:10.1371/journal.pntd.0004152

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaestli M, Harrington G, Mayo M, Chatfield MD, Harrington I, Hill A, Munksgaard N, Gibb K, Currie BJ (2015) What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens? PLoS Negl Trop Dis 9(3):e0003635. doi:10.1371/journal.pntd.0003635

    Article  PubMed  PubMed Central  Google Scholar 

  • Kespichayawattana W, Rattanachetkul S, Wanun T, Utaisincharoen P, Sirisinha S (2000) Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68:5377–5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketheesan N, Barnes JL, Ulett GC, VanGessel HJ, Norton RE, Hirst RG, LaBrooy JT (2002) Demonstration of a cell-mediated immune response in melioidosis. J Infect Dis 186(2):286–289

    Article  PubMed  Google Scholar 

  • Lazzaroni SM, Barnes JL, Williams NL, Govan BL, Norton RE, LaBrooy JT, Ketheesan N (2008) Seropositivity to Burkholderia pseudomallei does not reflect the development of cell-mediated immunity. Trans R Soc Trop Med Hyg 102(Suppl 1):S66–S70

    Article  PubMed  Google Scholar 

  • Limmathurotsakul D, Peacock S (2011) Melioidosis: a clinical overview. Br Med Bull 99:125–139

    Article  PubMed  Google Scholar 

  • Limmathurotsakul D, Jamsen K, Arayawichanont A, Simpson JA, White LJ, Lee SJ, Wuthiekanun V, Chantratita N, Cheng A, Day NP, Verzilli C, Peacock SJ (2010a) Defining the true sensitivity of culture for the diagnosis of melioidosis using Bayesian latent class models. PLoS One 5(8):e12485. doi:10.1371/journal.pone.0012485

    Article  PubMed  PubMed Central  Google Scholar 

  • Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, Chetchotisakd P, Chaowagul W, Day NP, Peacock SJ (2010b) Increasing incidence of human melioidosis in Northeast Thailand. Am J Trop Med Hyg 82(6):1113–1117

    Article  PubMed  PubMed Central  Google Scholar 

  • Limmathurotsakul D, Koh G, Peacock SJ, Currie BJ (2012) Chronic melioidosis, relapse and latency. In: Ketheesan N (ed) Melioidosis: a century of observation and research. Elsevier Press, Amsterdam, pp 282–299

    Google Scholar 

  • Lipsitz R, Garges S, Aurigemma R, Baccam P, Blaney DD, Cheng AC, Currie BJ, Dance D, Gee JE, Larsen J, Limmathurotsakul D, Morrow MG, Norton R, O’Mara E, Peacock SJ, Pesik N, Rogers LP, Schweizer HP, Steinmetz I, Tan G, Tan P, Wiersinga WJ, Wuthiekanun V, Smith TL (2012) Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei infection, 2010. Emerg Infect Dis 18(12):e2. doi:10.3201/eid1812.120638

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe P, Engler C, Norton R (2002) Comparison of automated and nonautomated systems for identification of Burkholderia pseudomallei. J Clin Microbiol 40(12):4625–4627

    Article  PubMed  PubMed Central  Google Scholar 

  • Lumbiganon P, Viengnondha S (1995) Clinical manifestations of melioidosis in children. Pediatr Infect Dis J 14:136–140

    Article  CAS  PubMed  Google Scholar 

  • Lutter EI, Bonner C, Holland MJ, Suchland RJ, Stamm WE, Jewett TJ, McClarty G, Hackstadt T (2010) Phylogenetic analysis of Chlamydia trachomatis Tarp and correlation with clinical phenotype. Infect Immun 78:3678–3688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malczewski A, Oman KM, Norton RE, Ketheesan N (2005) Clinical presentation of melioidosis in Queensland, Australia. Trans R Soc Trop Med Hyg 99:856–860

    Article  PubMed  Google Scholar 

  • Melot B, Colot J, Lacassin F, Tardieu S, Lapisardi E, Mayo M, Price EP, Sarovich DS, Currie BJ, Goarant C (2015) Melioidosis in New Caledonia: a dominant strain in a transmission hotspot. Epidemiol Infect 144(6):1330–1337

    Google Scholar 

  • Meumann EM, Cheng AC, Ward L, Currie BJ (2012) Clinical features and epidemiology of melioidosis pneumonia: results from a 21-year study and review of the literature. Clin Infect Dis 54(3):362–369

    Article  PubMed  Google Scholar 

  • Mirich GS, Zimmerman HM, Maner GD, Humphrey AA (1946) Melioidosis on Guam. JAMA 130:1063–1067

    Article  Google Scholar 

  • Mongkolrob R, Taweechaisupopong S, Tungpradabkul S (2015) Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsl, ppk and rpoS mutant strains. Microbiol Immunol 59(11):653–663. doi:10.1111/1348-0421.12331

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Hodgson K, Ketheesan N (2012) Development of protection. In: Ketheesan N (ed) Melioidosis: a century of observation and research. Elsevier Press, Amsterdam, pp 282–299

    Google Scholar 

  • Morse LP, Moller CC, Harvey E, Ward L, Cheng AC, Carson PJ, Currie BJ (2009) Prostatic abscesses due to Burkholderia pseudomallei: 81 cases from a 19 year prospective melioidosis study. J Urol 182:542–547

    Article  PubMed  Google Scholar 

  • Norton R, Wuthiekanun V (2012) Laboratory diagnosis and detection. In: Ketheesan N (ed) Melioidosis: a century of observation and research. Elsevier Press, Amsterdam, pp 147–180

    Google Scholar 

  • Peacock SJ, Limmathurotsakul D, Lubell Y, Koh GC, White LJ, Day NP, Titball RW (2012) Melioidosis vaccines: a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes. PLoS Negl Trop Dis 6(1):e1488. doi:10.1371/journal.pntd.0001488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitman MC, Luck T, Marshall CS, Anstey NM, Ward L, Currie BJ (2015) Intravenous therapy duration and outcomes in melioidosis: a new treatment paradigm. PLoS Negl Trop Dis 9(3):e0003586. doi:10.1371/journal.pntd.0003586

    Article  PubMed  PubMed Central  Google Scholar 

  • Rimington RA (1962) Melioidosis in Northern Queensland. Med J Aust 1:50–53

    Google Scholar 

  • Riyapa D, Buddhisa S, Korbsrisate S, Cuccui J, Wren BW, Stevens MP, Ato M, Lertmemongkolchai G (2012) Neutrophil extracellular traps exhibit antibacterial activity against Burkholderia pseudomallei and are influenced by bacterial and host factors. Infect Immun 80(11):3921–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson J, Levy A, Sagripanti J-S, Inglis TJJ (2010) The survival of Burkholderia pseudomallei in liquid media. Am J Trop Med Hyg 82(1):88–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Santanirand P, Harley VS, Dance DAB, Drasar BS, Bancroft GJ (1999) Obligatory role of gamma interferon for host survival in a murine model of infection with Burkholderia pseudomallei. Infect Immun 67:3593–3600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar-Tyson M, Titball RW (2010) Progress toward development of vaccines against melioidosis. Clin Ther 32(8):1437–1445

    Article  CAS  PubMed  Google Scholar 

  • Sarovich DS, Price EP, Von Schulze AT, Cook JM, Mayo M, Watson LM, Richardson L, Seymour ML, Tuanyok A, Engelthaler DM, Pearson T, Peacock SJ, Currie BJ, Keim P, Wagner DM (2012) Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia. PLoS One 7(2):e30789. doi:10.1371/journal.pone.0030789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarovich DS, Price EP, Webb JR, Ward LM, Voutsinos MY, Tuanyok A, Mayo M, Kaestli M, Currie BJ (2014) Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS One 9(3):e91682, doi:10.1371

    Article  PubMed  PubMed Central  Google Scholar 

  • Schweizer HP (2012) Mechanisms of antibiotic resistance in Burkholderia pseudomallei: implications for treatment of melioidosis. Future Microbiol 7(12):1389–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalom G, Shaw JG, Thomas MS (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153(8):2689–2699

    Article  CAS  PubMed  Google Scholar 

  • Sitthidet C, Stevens JM, Chantratita N, Currie BJ, Peacock SJ, Korbsrisate S, Stevens MP (2008) Prevalence and sequence diversity of a factor required for actin-based motility in natural populations of Burkholderia species. J Clin Microbiol 46:2418–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitthidet C, Korbsrisate S, Layton AN, Field TR, Stevens MP, Stevens JM (2011) Identification of motifs of Burkholderia pseudomallei BimA required for intracellular motility, actin binding, and actin polymerization. J Bacteriol 193:1901–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz I, Rohde M, Brenneke B (1995) Purification and characterisation of an exopolysaccharide of Burkholderia(Pseudomonas) pseudomallei. Infect Immun 63:3959–3965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens MP, Wood MW, Taylor LA, Monaghan P, Hawes P, Jones PW, AWallis TS, Galyov EE (2002) An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 46:649–659

    Article  CAS  PubMed  Google Scholar 

  • Stevens MP, Haque A, Atkins T, Hill J, Wood MW, Easton A, Nelson M, Underwood-Fowler C, Titball RW, Bancroft GJ, Galyov EE (2004) Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 150:2669–2676

    Article  CAS  PubMed  Google Scholar 

  • Stevens MP, Stevens JM, Jeng RL, Taylor LA, Wood MW, Hawes P, Monaghan P, Welch MD, Galyov EE (2005) Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol Microbiol 56:40–53

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, DeShazer D, Brett PJ, Burtnick MN (2014) Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 12(12):1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun GW, Lu J, Pervaiz S, Cao WP, Gan YH (2005) Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol 7:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Suparak S, Kespichayawattana W, Haque A, Easton A, Damnin S, Lertmemongkolchai G, Bancroft GJ, Korbsrisate S (2005) Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol 187:6556–6560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KS, Lee KO, Low KC, Gamage AM, Liu Y, Tan GY, Koh HQ, Alonso S, Gan YH (2012) Glutathione deficiency in type 2 diabetes impairs cytokine responses and control of intracellular bacteria. J Clin Invest 122(6):2289–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warawa JM, Long D, Rosenke R, Gardner D, Gherardini FC. 2009. Role for the Burkholderia pseudomallei capsular polysaccharide encoded by the wcb operon in acute disseminated melioidosis. Infect Immun 77(12): 5252–5261

    Google Scholar 

  • Warner JM, Pelowa DB, Currie BJ, Hirst RG (2007) Melioidosis in a rural community of Western Province, Papua New Guinea. Trans R Soc Trop Med Hyg 101(8):809–813

    Article  CAS  PubMed  Google Scholar 

  • West TE, Chierakul W, Chantratita N, Limmathurotsakul D, Wuthiekanun V, Emond MJ, Hawn TR, Peacock SJ, Skerret SJ (2011) Toll-like receptor 4 region genetic variants are associated with susceptibility to melioidosis. Genes Immun 13:38–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiersinga WJ, Currie BJ, Peacock SJ (2012) Melioidosis. N Engl J Med 367(11):1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Wikraiphat C, Saiprom N, Tandhavanant S, Heiss C, Azadi P, Wongsuvan G, Tuanyok A, Holden MT, Burtnick MN, Brett PJ, Peacock SJ, Chantratita N (2015) Colony morphology variation of Burkholderia pseudomallei is associated with antigenic variation and O-polysaccharide modification. Infect Immun 83(5):2127–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams NL, Morris JL, Rush CM, Ketheesan N (2014) Migration of dendritic cells facilitates systemic dissemination of Burkholderia pseudomallei. Infect Immun 82(10):4233–4240

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuthiekanun V, Smith MD, White NJ (1995) Survival of Burkholderia pseudomallei in the absence of nutrients. Trans R Soc Trop Med Hyg 89:491

    Article  CAS  PubMed  Google Scholar 

Download references

Sources of Funding

This work was supported by funding from The Townsville Hospital and Health Service Training Grant (RG00212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natkunam Ketheesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morris, J.L., Govan, B.L., Norton, R.E., Currie, B.J., Ketheesan, N. (2016). Melioidosis: A Neglected Bacterial Infection Associated with High Mortality. In: Loukas, A. (eds) Neglected Tropical Diseases - Oceania. Neglected Tropical Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-43148-2_11

Download citation

Publish with us

Policies and ethics