Skip to main content

Organic Metal Species as Risk Factor for Neurological Diseases

  • Chapter
  • First Online:
Environmental Determinants of Human Health

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 1045 Accesses

Abstract

This chapter will focus on organic metal species of environmental concern that can exercise some influence on neurological disorders. A variety of organic metal species were identified in the last couple of years and their concentrations in the environment are rising. Moreover cases of overnutrition are increasing and due to the fortification of various organic metallic compounds in our diet there are growing anxieties that food ingredients may inadvertently be contributing to neurological disorders. This chapter provides a summary of organic metal species that have been linked with neurological disorders including its exposure pathways (especially diet), and a possible risk in the context of consumers safety pointing out gaps in the actual research. The list includes agents which have no known biological role in humans as organic species of mercury, tin, lead and arsenic. Besides the classical organometals also aluminium is illuminated. Additionally those, such as iron and manganese which are essential for life but can be toxic when absorbed in excess amounts will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadin HG, Pohl HR (2010) Alkyllead compounds and their environmental toxicology. Met Ions Life Sci 7:153–164. doi:10.1039/BK9781847551771-00153

    Article  CAS  PubMed  Google Scholar 

  • Alves G, Thiebot J, Tracqui A, Delangre T, Guedon C, Lerebours E (1997) Neurologic disorders due to brain manganese deposition in a jaundiced patient receiving long-term parenteral nutrition. JPEN J Parenter Enteral Nutr 21(1):41–45

    Article  CAS  PubMed  Google Scholar 

  • Andrewes P, Demarini DM, Funasaka K, Wallace K, Lai VW, Sun H, Cullen WR, Kitchin KT (2004) Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar. Environ Sci Technol 38(15):4140–4148

    Article  CAS  PubMed  Google Scholar 

  • Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26(4-5):353–362. doi:10.1016/j.mam.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Onishchenko N, Ceccatelli S (2010) Toxicology of alkylmercury compounds. Met Ions Life Sci 7:403–434. doi:10.1039/bk9781847551771-00403

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (2005) Toxicological profile for Tin and tin compounds. US Department of Health and Human Service, Washington, DC

    Google Scholar 

  • ATSDR (2007) Toxicology profile for lead. US Department of Health and Human Service, Washington, DC

    Google Scholar 

  • ATSDR (2008) Draft toxicological profile for manganese. US Department of Health and Human Service, Atlanta, GA

    Google Scholar 

  • Barceloux DG (1999) Manganese. J Toxicol Clin Toxicol 37(2):293–307

    Article  CAS  PubMed  Google Scholar 

  • Berglund M, Lind B, Bjornberg KA, Palm B, Einarsson O, Vahter M (2005) Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. Environ Health 4:20. doi:10.1186/1476-069X-4-20

    Article  PubMed  PubMed Central  Google Scholar 

  • BfR (2004) Use of minerals in foods toxicological and nutritional-physiological aspects Part II

    Google Scholar 

  • BfR (2008) Frequently asked questions and answers about iron in food

    Google Scholar 

  • Billingsley ML, Yun J, Reese BE, Davidson CE, Buck-Koehntop BA, Veglia G (2006) Functional and structural properties of stannin: roles in cellular growth, selective toxicity, and mitochondrial responses to injury. J Cell Biochem 98(2):243–250. doi:10.1002/jcb.20809

    Article  CAS  PubMed  Google Scholar 

  • Bornhorst J, Chakraborty S, Meyer S, Lohren H, Brinkhaus SG, Knight AL, Caldwell KA, Caldwell GA, Karst U, Schwerdtle T, Bowman A, Aschner M (2014) The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of alpha-synuclein in C. elegans. Metallomics 6(3):476–490. doi:10.1039/c3mt00325f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouldin TW, Goines ND, Bagnell RC, Krigman MR (1981) Pathogenesis of trimethyltin neuronal toxicity. Ultrastructural and cytochemical observations. Am J Pathol 104(3):237–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman AB, Kwakye GF, Hernandez EH, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25(4):191–203. doi:10.1016/j.jtemb.2011.08.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer IJ (1989) Toxicity of dibutyltin, tributyltin and other organotin compounds to humans and to experimental animals. Toxicology 55(3):253–298

    Article  CAS  PubMed  Google Scholar 

  • Bridges CC, Zalups RK (2010) Transport of inorganic mercury and methylmercury in target tissues and organs. J Toxicol Environ Health B Crit Rev 13(5):385–410. doi:10.1080/10937401003673750

    Article  CAS  PubMed  Google Scholar 

  • Carocci A, Rovito N, Sinicropi MS, Genchi G (2014) Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol 229:1–18. doi:10.1007/978-3-319-03777-6_1

    CAS  PubMed  Google Scholar 

  • Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC, Wessel S, Elangovan I, Hornung R, Jarvis K, Lanphear BP (2008) Decreased brain volume in adults with childhood lead exposure. PLoS Med 5(5), e112. doi:10.1371/journal.pmed.0050112

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Chen P, Bornhorst J, Schwerdtle T, Schumacher F, Kleuser B, Bowman AB, Aschner M (2015) Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans. Metallomics 7(5):847–856. doi:10.1039/c5mt00052a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124. doi:10.3389/fncel.2015.00124

    Article  PubMed  PubMed Central  Google Scholar 

  • Committee on Toxicity (COT) (2013) Statement on the potential risks from aluminium in the infant diet. pp 1–24

    Google Scholar 

  • Corvino V, Marchese E, Michetti F, Geloso MC (2013) Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 38(2):240–253. doi:10.1007/s11064-012-0932-9

    Article  CAS  PubMed  Google Scholar 

  • Corvino V, Marchese E, Podda MV, Lattanzi W, Giannetti S, Di Maria V, Cocco S, Grassi C, Michetti F, Geloso MC (2014) The neurogenic effects of exogenous neuropeptide Y: early molecular events and long-lasting effects in the hippocampus of trimethyltin-treated rats. PLoS One 9(2), e88294. doi:10.1371/journal.pone.0088294

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa L, Aschner M (2015) Manganese in health and disease. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Davenward S, Bentham P, Wright J, Crome P, Job D, Polwart A, Exley C (2013) Silicon-rich mineral water as a non-invasive test of the ‘aluminum hypothesis’ in Alzheimer’s disease. J Alzheimers Dis 33(2):423–430. doi:10.3233/JAD-2012-12123192280Q5860P8543M

    CAS  PubMed  Google Scholar 

  • EFSA (2006) Tolerable upper intake levels for vitamins and minerals

    Google Scholar 

  • EFSA (2008) Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). Safety of aluminium from dietary intake. EFSA J 6(7):1–34

    Google Scholar 

  • EFSA (2009) EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on arsenic in food. EFSA J 7(10):1351–1355

    Article  Google Scholar 

  • EFSA (2010) Scientific opinion on lead in food. EFSA J 8(4):1–151

    Google Scholar 

  • EFSA (2012) Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J 10:1–241

    Google Scholar 

  • EFSA (2013) Dietary exposure to aluminium-containing food additives Supporting Publications EN-411

    Google Scholar 

  • EFSA (2013b) Scientific Opinion on dietary reference values for manganese. EFSA J 11(11):1–44

    Google Scholar 

  • EFSA (2015) Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J 13(1):1–36

    Google Scholar 

  • European Union (1998) Corrigendum to Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption (OJ L 330 of 5.12.1998)

    Google Scholar 

  • European Union (2006) Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance) (OJ L 364, 20.12.2006, p 5)

    Google Scholar 

  • European Union (2008) Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives (Text with EEA relevance)

    Google Scholar 

  • European Union (2012) Commission Regulation (EU) No 380/2012 of 3 May 2012 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the conditions of use and the use levels for aluminium-containing food additives

    Google Scholar 

  • Exley C (2003) A biogeochemical cycle for aluminium? J Inorg Biochem 97(1):1–7, doi:S0162013403002745 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Exley C (2009) Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends Biochem Sci 34(12):589–593. doi:10.1016/j.tibs.2009.07.006S0968-0004(09)00167-4

    Article  CAS  PubMed  Google Scholar 

  • Exley C (2013) Human exposure to aluminium. Environ Sci Process Impacts 15(10):1807–1816. doi:10.1039/c3em00374d

    Article  CAS  PubMed  Google Scholar 

  • Exley C (2014a) Why industry propaganda and political interference cannot disguise the inevitable role played by human exposure to aluminum in neurodegenerative diseases, including Alzheimer’s disease. Front Neurol 5:212. doi:10.3389/fneur.2014.00212

    Article  PubMed  PubMed Central  Google Scholar 

  • Exley C (2014b) What is the risk of aluminium as a neurotoxin? Expert Rev Neurother 14(6):589–591. doi:10.1586/14737175.2014.915745

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2011) Safety evaluation of certain food additives and contaminants. WHO food additives series, vol 63. Mercury, pp 605–685

    Google Scholar 

  • FAO/WHO (2012) Safety evaluation of certain food additives and contaminants: prepared by the seventy-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives Series, vol 65. pp 3–86

    Google Scholar 

  • Feldmann J, Krupp EM (2011) Critical review or scientific opinion paper: arsenosugars—a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs? Anal Bioanal Chem 399(5):1735–1741. doi:10.1007/s00216-010-4303-6

    Article  CAS  PubMed  Google Scholar 

  • Flynn MR, Susi P (2009) Neurological risks associated with manganese exposure from welding operations—a literature review. Int J Hyg Environ Health 212(5):459–469

    Article  CAS  PubMed  Google Scholar 

  • Friedman BJ, Freeland-Graves JH, Bales CW, Behmardi F, Shorey-Kutschke RL, Willis RA, Crosby JB, Trickett PC, Houston SD (1987) Manganese balance and clinical observations in young men fed a manganese-deficient diet. J Nutr 117(1):133–143

    CAS  PubMed  Google Scholar 

  • Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93(4):1721–1741. doi:10.1152/physrev.00008.2013

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Nemeth E (2011) Hepcidin and disorders of iron metabolism. Annu Rev Med 62:347–360. doi:10.1146/annurev-med-050109-142444

    Article  CAS  PubMed  Google Scholar 

  • Geloso MC, Corvino V, Michetti F (2011) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58(7):729–738. doi:10.1016/j.neuint.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  • Gibaud S, Jaouen G (2010) Arsenic-based drugs: from fowler’s solution to modern anticancer chemotherapy. In: Jaouen G, Metzler-Nolte N (eds) Medicinal organometallic chemistry, vol 32, Topics in organometallic chemistry. Springer, Berlin Heidelberg, pp 1–20. doi:10.1007/978-3-642-13185-1_1

    Chapter  Google Scholar 

  • Goldstein GW (1993) Evidence that lead acts as a calcium substitute in 2nd messenger metabolism. Neurotoxicology 14(2–3):97–102

    CAS  PubMed  Google Scholar 

  • Gould E (2009) Childhood lead poisoning: conservative estimates of the social and economic benefits of lead hazard control. Environ Health Perspect 117(7):1162–1167. doi:10.1289/ehp.0800408

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyer RA (1996) Results of lead research: prenatal exposure and neurological consequences. Environ Health Perspect 104(10):1050–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandjean P, Herz KT (2015) Trace elements as paradigms of developmental neurotoxicants: lead, methylmercury and arsenic. J Trace Elem Med Biol 31:130–134. doi:10.1016/j.jtemb.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  • Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118(8):1071–1080. doi:10.1289/ehp.0901748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilarte TR, Miceli RC, Altmann L, Weinsberg F, Winneke G, Wiegand H (1993) Chronic prenatal and postnatal Pb2+ exposure increases [3H]MK801 binding sites in adult rat forebrain. Eur J Pharmacol 248(3):273–275

    CAS  PubMed  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24. doi:10.3109/10408449509089885

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ, Lefebvre d’Hellencourt C (2003) Dentate gyrus: alterations that occur with hippocampal injury. Neurotoxicology 24(3):343–356. doi:10.1016/S0161-813X(03)00039-1

    Article  PubMed  Google Scholar 

  • Hershko C, Peto TE, Weatherall DJ (1988) Iron and infection. Br Med J (Clin Res Ed) 296(6623):660–664

    Article  CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332. doi:10.1093/toxsci/kfr184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IARC (2012) A review of human carcinogens. Part C: Arsenic, metals, fibres, and dusts. IARC Monographs, pp 196–211

    Google Scholar 

  • IOM (2002) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. pp 1–20

    Google Scholar 

  • Jensen PD, Jensen FT, Christensen T, Eiskjaer H, Baandrup U, Nielsen JL (2003) Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine: indication of close relation between myocardial iron content and chelatable iron pool. Blood 101(11):4632–4639. doi:10.1182/blood-2002-09-2754

    Article  CAS  PubMed  Google Scholar 

  • Jiang GB, Zhou QF, He B (2000) Tin compounds and major trace metal elements in organotin poisoned patient’s urine and blood measured by gas chromatography flame photometric detector and inductively coupled plasma mass spectrometry. Bull Environ Contam Toxicol 65:277–284

    Article  CAS  Google Scholar 

  • Kaur S, Nehru B (2013) Alteration in glutathione homeostasis and oxidative stress during the sequelae of trimethyltin syndrome in rat brain. Biol Trace Elem Res 153(1–3):299–308. doi:10.1007/s12011-013-9676-x

    Article  CAS  PubMed  Google Scholar 

  • Kim G, Lee HS, Seok Bang J, Kim B, Ko D, Yang M (2015) A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 33(2):229–254. doi:10.1080/10590501.2015.1030530

    Article  CAS  PubMed  Google Scholar 

  • Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10(Suppl 1):1–269. doi:10.1080/10937400701597766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166. doi:10.1016/j.neuro.2014.02.004 S0161-813X(14)00027-8

  • Kumar S, Jain S, Aggarwal CS, Ahuja GK (1987) Encephalopathy due to inorganic lead exposure in an adult. Jpn J Med 26(2):253–254

    Article  CAS  PubMed  Google Scholar 

  • Kyriakides MA, Sawyer RT, Allen SL, Simpson MG (1990) Mechanism of action of triethyltin on identified leech neurons. Toxicol Lett 53(3):285–295

    Article  CAS  PubMed  Google Scholar 

  • Lattanzi W, Corvino V, Di Maria V, Michetti F, Geloso MC (2013) Gene expression profiling as a tool to investigate the molecular machinery activated during hippocampal neurodegeneration induced by trimethyltin (TMT) administration. Int J Mol Sci 14(8):16817–16835. doi:10.3390/ijms140816817

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Lan C, Loreal O, Cohen T, Ropert M, Glickstein H, Laine F, Pouchard M, Deugnier Y, Le Treut A, Breuer W, Cabantchik ZI, Brissot P (2005) Redox active plasma iron in C282Y/C282Y hemochromatosis. Blood 105(11):4527–4531. doi:10.1182/blood-2004-09-3468

    Article  PubMed  Google Scholar 

  • Leffers L, Ebert F, Taleshi MS, Francesconi KA, Schwerdtle T (2013a) In vitro toxicological characterization of two arsenosugars and their metabolites. Mol Nutr Food Res 57(7):1270–1282. doi:10.1002/mnfr.201200821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leffers L, Wehe CA, Huwel S, Bartel M, Ebert F, Taleshi MS, Galla HJ, Karst U, Francesconi KA, Schwerdtle T (2013b) In vitro intestinal bioavailability of arsenosugar metabolites and presystemic metabolism of thio-dimethylarsinic acid in Caco-2 cells. Metallomics 5(8):1031–1042. doi:10.1039/c3mt00039g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljung K, Palm B, Grandér M, Vahter M (2011) High concentrations of essential and toxic elements in infant formula and infant foods—a matter of concern. Food Chem 127(3):943–951

    Article  CAS  PubMed  Google Scholar 

  • Lovei M (1999) Eliminating a silent threat. World Bank support for the global. Phaseout of lead from gasoline. The George Foundation, India

    Google Scholar 

  • Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. Biomed Res Int 2014:840547. doi:10.1155/2014/840547

    PubMed  PubMed Central  Google Scholar 

  • Meyer S, Matissek M, Muller SM, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T (2014a) In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics 6(5):1023–1033. doi:10.1039/c4mt00061g

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Schulz J, Jeibmann A, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T (2014b) Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster. Metallomics 6(11):2010–2014. doi:10.1039/c4mt00249k

    Article  CAS  PubMed  Google Scholar 

  • Michalke B, Fernsebner K (2014) New insights into manganese toxicity and speciation. J Trace Elem Med Biol 28(2):106–116. doi:10.1016/j.jtemb.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  • Mielke HW, Gonzales CR, Smith MK, Mielke PW (1999) The urban environment and children’s health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A. Environ Res 81(2):117–129. doi:10.1006/enrs.1999.3966

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Gera R, Siddiqui WA, Khandelwal S (2013) Tributyltin induces oxidative damage, inflammation and apoptosis via disturbance in blood-brain barrier and metal homeostasis in cerebral cortex of rat brain: an in vivo and in vitro study. Toxicology 310:39–52. doi:10.1016/j.tox.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Hachiya N, Murata KY, Nakanishi I, Kondo T, Yasutake A, Miyamoto K, Ser PH, Omi S, Furusawa H, Watanabe C, Usuki F, Sakamoto M (2014) Methylmercury exposure and neurological outcomes in Taiji residents accustomed to consuming whale meat. Environ Int 68:25–32. doi:10.1016/j.envint.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  • Naranmandura H, Ibata K, Suzuki KT (2007) Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells. Chem Res Toxicol 20(8):1120–1125. doi:10.1021/tx700103y

    Article  CAS  PubMed  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302. doi:10.1289/ehp.1205875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichani V, Li WI, Smith MA, Noonan G, Kulkarni M, Kodavor M, Naeher LP (2006) Blood lead levels in children after phase-out of leaded gasoline in Bombay, India. Sci Total Environ 363(1–3):95–106. doi:10.1016/j.scitotenv.2005.06.033

    Article  CAS  PubMed  Google Scholar 

  • Noland EA, Taylor DH, Bull RJ (1982) Monomethyl-and trimethyltin compounds induce learning deficiencies in young rats. Neurobehav Toxicol Teratol 4(5):539–544

    CAS  PubMed  Google Scholar 

  • Olanow CW (2004) Manganese-induced Parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223

    Article  CAS  PubMed  Google Scholar 

  • Olympio KP, Goncalves C, Gunther WM, Bechara EJ (2009) Neurotoxicity and aggressiveness triggered by low-level lead in children: a review. Rev Panam Salud Publica 26(3):266–275

    Article  PubMed  Google Scholar 

  • Page KE, White KN, McCrohan CR, Killilea DW, Lithgow GJ (2012) Aluminium exposure disrupts elemental homeostasis in Caenorhabditis elegans. Metallomics 4(5):512–522. doi:10.1039/c2mt00146b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piga A, Longo F, Duca L, Roggero S, Vinciguerra T, Calabrese R, Hershko C, Cappellini MD (2009) High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol 84(1):29–33. doi:10.1002/ajh.21317

    Article  CAS  PubMed  Google Scholar 

  • Pirkle JL, Kaufmann RB, Brody DJ, Hickman T, Gunter EW, Paschal DC (1998) Exposure of the U.S. population to lead, 1991-1994. Environ Health Perspect 106(11):745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racette BA (2014) Manganism in the 21st century: the Hanninen lecture. Neurotoxicology 45:201–207. doi:10.1016/j.neuro.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  • Raml R, Rumpler A, Goessler W, Vahter M, Li L, Ochi T, Francesconi KA (2007) Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicol Appl Pharmacol 222(3):374–380. doi:10.1016/j.taap.2006.12.014, S0041-008X(06)00488-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Saary MJ, House RA (2002) Preventable exposure to trimethyl tin chloride: a case report. Occup Med 52(4):227–230

    Article  CAS  Google Scholar 

  • Salvador GA, Uranga RM, Giusto NM (2010) Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis 2011:720658. doi:10.4061/2011/720658

    PubMed  PubMed Central  Google Scholar 

  • Santamaria AB (2008) Manganese exposure, essentiality and toxicity. Indian J Med Res 128(4):484–500

    CAS  PubMed  Google Scholar 

  • Schulze MB, Linseisen J, Kroke A, Boeing H (2001) Macronutrient, vitamin, and mineral intakes in the EPIC-Germany cohorts. Ann Nutr Metab 45(5):181–189. doi:10.1159/000046727

    Article  CAS  PubMed  Google Scholar 

  • Schumann K (2001) Safety aspects of iron in food. Ann Nutr Metab 45(3):91–101. doi:10.1159/000046713

    Article  CAS  PubMed  Google Scholar 

  • Snoeij NJ, van Iersel AA, Penninks AH, Seinen W (1985) Toxicity of triorganotin compounds: comparative in vivo studies with a series of trialkyltin compounds and triphenyltin chloride in male rats. Toxicol Appl Pharmacol 81(2):274–286

    Article  CAS  PubMed  Google Scholar 

  • Strain JJ, Yeates AJ, van Wijngaarden E, Thurston SW, Mulhern MS, McSorley EM, Watson GE, Love TM, Smith TH, Yost K, Harrington D, Shamlaye CF, Henderson J, Myers GJ, Davidson PW (2015) Prenatal exposure to methyl mercury from fish consumption and polyunsaturated fatty acids: associations with child development at 20 mo of age in an observational study in the Republic of Seychelles. Am J Clin Nutr 101(3):530–537. doi:10.3945/ajcn.114.100503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26(4):215–226. doi:10.1016/j.jtemb.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  • Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23(4):567–598. doi:10.3233/JAD-2010-101494VQ1P78553222661M

    CAS  PubMed  Google Scholar 

  • Tuschl K, Mills PB, Clayton PT (2013) Manganese and the brain. Int Rev Neurobiol 110:277–312. doi:10.1016/B978-0-12-410502-7.00013-2

    Article  CAS  PubMed  Google Scholar 

  • Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1:132–147. doi:10.1007/s40572-014-0012-1

    Article  PubMed  PubMed Central  Google Scholar 

  • USDA (2014) China’s maximum levels for contaminants in food. Foreign Agriculture Service Global Agriculture Information Network Report CH14058

    Google Scholar 

  • Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26(10):823–832. doi:10.1177/0960327107084539

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82(11):789–802. doi:10.1007/s00204-008-0345-3

    Article  CAS  PubMed  Google Scholar 

  • Wang QQ, Thomas DJ, Naranmandura H (2015) Importance of being thiomethylated: formation, fate, and effects of methylated thioarsenicals. Chem Res Toxicol 28(3):281–289. doi:10.1021/tx500464t

    Article  CAS  PubMed  Google Scholar 

  • WHO (1998) Human exposure to lead. Report on the Human Exposure Assessment Location (HEAL) Programme. Meeting held in Bangkok, Thailand

    Google Scholar 

  • WHO (2001) Arsenic and arsenic compounds. Environmental health criteria, vol 224. Geneva

    Google Scholar 

  • Yoo CI, Kim Y, Jeong KS, Sim CS, Choy N, Kim J, Eum JB, Nakajima Y, Endo Y, Kim YJ (2007) A case of acute organotin poisoning. J Occup Health 49(4):305–310

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Bornhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyer, S., Weber, T., Haferkorn-Starke, R., Schwerdtle, T., Bornhorst, J. (2016). Organic Metal Species as Risk Factor for Neurological Diseases. In: Pacyna, J., Pacyna, E. (eds) Environmental Determinants of Human Health. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-43142-0_5

Download citation

Publish with us

Policies and ethics