Skip to main content

Central Venous-to-Arterial Carbon Dioxide Partial Pressure Difference

Abstract

Assessing the adequacy of oxygen delivery and oxygen requirements is one of the key steps of haemodynamic resuscitation. For this purpose, clinical examination, lactate and central or mixed venous oxygen saturation (SvO2 and ScvO2, respectively) all have their limitations. Many of these limitations may be overcome by use of the carbon dioxide (CO2)-derived variables. The veno-arterial difference in CO2 tension (“ΔPCO2” or “PCO2 gap”) is not a straightforward indicator of anaerobic metabolism since it is influenced by the oxygen consumption. By contrast, it reliably indicates whether cardiac output is sufficient to carry the CO2 to the lungs in view of its clearance: it reflects the adequacy of cardiac output with the metabolic condition. The ratio of the PCO2 gap with the arteriovenous difference of oxygen content (PCO2 gap/C(A − V)O2) is a reliable marker of the adequacy between oxygen supply and requirements. Conversely to SvO2 and ScvO2, it remains interpretable if the oxygen extraction is impaired in septic shock patients. Compared to lactate, it has the main advantage to change without delay and to provide a real-time monitoring of tissue metabolism.

Keywords

  • Tissue oxygenation
  • Cardiac output
  • Central venous oxygenation
  • Oxygen delivery

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-43130-7_8
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-43130-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 8.1

References

  1. Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Phys. 1966;211(2):493–505.

    CAS  Google Scholar 

  2. Jensen FB. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand. 2004;182(3):215–27.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev. 2000;80(2):681–715.

    CrossRef  CAS  PubMed  Google Scholar 

  4. West JB. Gas transport to the periphery:how gases are moved to the peripheral tissues. In: West JB, editor. Respiratory physiology the essentials. 4th ed. Baltimore: Williams and Wilkins; 1990. p. 69–85.

    Google Scholar 

  5. Cavaliere F, Giovannini I, Chiarla C, Conti G, Pennisi MA, Montini L, et al. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir Physiol Neurobiol. 2005;146(1):77–83.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Jensen FB. Comparative analysis of autoxidation of haemoglobin. J Exp Biol. 2001;204(Pt 11):2029–33.

    PubMed  CAS  Google Scholar 

  7. McHardy GJ. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci. 1967;32(2):299–309.

    PubMed  CAS  Google Scholar 

  8. Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148(4 Pt 1):867–71.

    CrossRef  CAS  PubMed  Google Scholar 

  9. Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73(5):576–82.

    PubMed  CAS  Google Scholar 

  10. Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26(6):1007–10.

    CrossRef  CAS  PubMed  Google Scholar 

  11. Grundler W, Weil MH, Rackow EC. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation. 1986;74(5):1071–4.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med. 1986;315(3):153–6.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Dres M, Monnet X, Teboul JL. Hemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference. J Clin Monit Comput. 2012;26(5):367–74.

    CrossRef  PubMed  Google Scholar 

  14. Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, et al. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80(2):269–75.

    PubMed  Google Scholar 

  15. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101(2):509–15.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18(6):585–9.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R. Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med. 1991;19(11):1362–4.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F. Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002;30(2):379–84.

    CrossRef  PubMed  Google Scholar 

  19. Dubin A, Murias G, Estenssoro E, Canales H, Badie J, Pozo M, et al. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care. 2002;6(6):514–20.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (1985). 2000;89(4):1317–21.

    CrossRef  CAS  Google Scholar 

  21. Gutierrez G. A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med. 2004;169(4):525–33.

    CrossRef  PubMed  Google Scholar 

  22. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330(24):1717–22.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333(16):1025–32.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28(3):272–7.

    CrossRef  PubMed  Google Scholar 

  25. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Markers of anaerobic metabolism are better than central venous oxygen saturation for detecting whether hemodynamic resuscitation will reduce tissue hypoxia. Intensive Care Med. 2011;37(Supp 1):S282.

    Google Scholar 

  26. Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please “mind the gap”! Intensive Care Med. 2013;39(9):1653–5.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25.

    CrossRef  PubMed  Google Scholar 

  28. Du W, Liu DW, Wang XT, Long Y, Chai WZ, Zhou X, et al. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care. 2013;28(6):1110.e1–5.

    CrossRef  Google Scholar 

  29. Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol. 2014;31(7):371–80.

    CrossRef  PubMed  Google Scholar 

  30. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412–20.

    CrossRef  CAS  PubMed  Google Scholar 

  31. d’Ortho MP, Delclaux C, Zerah F, Herigault R, Adnot S, Harf A. Use of glass capillaries avoids the time changes in high blood PO(2) observed with plastic syringes. Chest. 2001;120(5):1651–4.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Monnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Monnet, X., Teboul, JL. (2018). Central Venous-to-Arterial Carbon Dioxide Partial Pressure Difference. In: Pinto Lima, A., Silva, E. (eds) Monitoring Tissue Perfusion in Shock. Springer, Cham. https://doi.org/10.1007/978-3-319-43130-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43130-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43128-4

  • Online ISBN: 978-3-319-43130-7

  • eBook Packages: MedicineMedicine (R0)