Skip to main content

Clinical Assessment

  • Chapter
  • First Online:
Monitoring Tissue Perfusion in Shock

Abstract

The physiological rationale for monitoring peripheral perfusion is based on the concept that the cutaneous circulation is deprived of autoregulation. Clinical parameters easily obtained at bedside can access compensatory mechanisms induced by shock in early stages, since hypoperfusion might occur despite normal macrohemodynamic parameters.

The capillary refill time (CRT) shows conflicting results in the literature. There is no well-established relationship between CRT and global hemodynamics; however the association with worse clinical outcomes should not be overlooked.

Peripheral temperature and temperature gradients are objective and cheap and available parameters obtained without discomfort to the patients. They are markers highly correlated with cardiac index and competent indicators of severity in shock.

Cold extremities are associated with changes in laboratory tissue perfusion markers such as blood PH, central venous oxygen saturation, and blood lactate levels. Furthermore, other parameters derived from physical examination, such as skin mottling score (SMS), are independent predictors of mortality and, therefore their use in combination with other tissue perfusion monitoring tools should be encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lima A, Bakker J. Noninvasive monitoring of peripheral perfusion. Intensive Care Med. 2005;31:1316–26.

    Article  PubMed  Google Scholar 

  2. Miyagatani Y, Yukioka T, Ohta S, et al. Vascular tone in patients with hemorrhagic shock. J Trauma. 1999;47:282–7.

    Article  CAS  PubMed  Google Scholar 

  3. Ikossi DG, Knudson MM, Morabito DJ, et al. Continuous muscle tissue oxygenation in critically injured patients: a prospective observational study. J Trauma. 2006;61:780–8.

    Article  PubMed  Google Scholar 

  4. Alexandre Lima; Tim C. Jansen; Jasper van Bommel, ; Can Ince, Bakker J. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med 2009 Vol. 37, (3):934–938.

    Article  PubMed  Google Scholar 

  5. Joly HR, Weil MH. Temperature of the great toe as an indication of the severity of shock. Circulation. 1969;39:131–8.

    Article  CAS  PubMed  Google Scholar 

  6. Thompson MJ, Ninis N, Perera R, et al. Clinical recognition of meningococcal disease in children and adolescents. Lancet. 2006;367:397–403.

    Article  PubMed  Google Scholar 

  7. Kaplan LJ, McPartland K, Santora TA, et al. Start with a subjective assessment of skin temperature to identify hypoperfusion in intensive care unit patients. J Trauma. 2001;50:620–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hasdai D, Holmes DR Jr, Califf RM, et al. Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO investigators. Global utilization of streptokinase and tissue-plasminogen activator for occluded coronary arteries. Am Heart J. 1999;138:21–31.

    Article  CAS  PubMed  Google Scholar 

  9. Tibby SM, Hatherill M, Murdoch IA. Capillary refill and core-peripheral temperature gap as indicators of haemodynamic status in paediatric intensive care patients. Arch Dis Child. 1999;80:163–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beecher HK, Simeone FA, Burnett CH. The internal state of the severely wounded man on entry to the most forward hospital. Surgery. 1947;22:672–81.

    PubMed  CAS  Google Scholar 

  11. Schriger DL, Baraff L. Defining normal capillary refill: variation with age, sex, and temperature. Ann Emerg Med. 1988;17:932–5.

    Article  CAS  PubMed  Google Scholar 

  12. Saavedra JM, Harris GD, Li S, Finberg L. Capillary refilling (skin turgor) in the assessment of dehydration. Am J Dis Child. 1991;145:296–8.

    PubMed  CAS  Google Scholar 

  13. Advanced Life Support Group. Advanced paediatric life support: the practical approach. 1st ed. London: BMJ Publishing Group; 1993. p. 76.

    Google Scholar 

  14. Gorelick MH, Shaw KN, Baker MD. Effect of ambient temperature on capillary refill in healthy children. Pediatrics. 1993;92:699–702.

    PubMed  CAS  Google Scholar 

  15. Bailey JM, Levy JH, Kopel MA, et al. Relationship between clinical evaluation of peripheral perfusion and global hemodynamics in adults after cardiac surgery. Crit Care Med. 1990;18:1353–6.

    Article  CAS  PubMed  Google Scholar 

  16. Steiner MJ, DeWalt DA, Byerley JS. Is this child dehydrated? JAMA. 2004;291:2746–54.

    Article  CAS  PubMed  Google Scholar 

  17. McGee S, Abernethy WB III, Simel DL. Is this patient hypovolemic? JAMA. 1999;281:1022–9.

    Article  CAS  PubMed  Google Scholar 

  18. Rubinstein EH, Sessler DI. Skinsurface temperature gradients correlate with fingertip blood flow in humans. Anesthesiology. 1990;73:541–5.

    Article  CAS  PubMed  Google Scholar 

  19. Ibsen B. Treatment of shock with vasodilators measuring temperature of the great toe: ten years experience in 150 cases. Dis Chest. 1967;52:425–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ruiz CE, Weil MH, Carlson RW. Treatment of circulatory shock with dopamine. Studies on survival. JAMA. 1979;242:165–8.

    Article  CAS  PubMed  Google Scholar 

  21. Guyton AC. Body temperature, temperature regulation, and fever. In: Guyton AC, Hall JE, editors. Textbook of medical physiology. Philadelphia: Saunders; 1996. p. 911–22.

    Google Scholar 

  22. Ross BA, Brock L, Aynsley-Green A. Observations on central and peripheral temperatures in the understanding and management of shock. Br J Surg. 1969;56:877–82.

    Article  CAS  PubMed  Google Scholar 

  23. Curley FJ, Smyrnios NA. Routine monitoring of critically ill patients. In: Irwin RS, Cerra FB, Rippe JM, editors. Intensive care medicine. New York: Lippincott Williams & Wilkins; 2003. p. 250–70.

    Google Scholar 

  24. Sessler DI. Skin-temperature gradients are a validated measure of fingertip perfusion. Eur J Appl Physiol. 2003;89:401–2.

    Article  PubMed  Google Scholar 

  25. House JR, Tipton MJ. Using skin temperature gradients or skin heat flux measurements to determine thresholds of vasoconstriction and vasodilatation. Eur J Appl Physiol. 2002;88:141–5.

    Article  PubMed  Google Scholar 

  26. Henning RJ, Wiener F, Valdes S, Weil MH. Measurement of toe temperature for assessing the severity of acute circulatory failure. Surg Gynecol Obstet. 1979;149:1–7.

    PubMed  CAS  Google Scholar 

  27. Vincent JL, Moraine JJ, van der LP. Toe temperature versus transcutaneous oxygen tension monitoring during acute circulatory failure. Intensive Care Med. 1988;14:64–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ebert RV, Stead EA. Circulatory failure in acute infections. J Clin Invest. 1941;20:671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Altemeier WA, Cole W. Septic shock. Ann Surg. 1956;143:600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J, Joffre J, Margetis D, Guidet B, Maury E, Offenstadt G. Mottling score predicts survival in septic shock. Intensive Care Med. 2011;37:801–7.

    Article  CAS  PubMed  Google Scholar 

  31. Duval A, Pouchot J. Livedo: from pathophysiology to diagnosis. Rev Med Interne. 2008;29:380–92.

    Article  CAS  PubMed  Google Scholar 

  32. Ait-Oufella H, Joffre J, Boelle PY, Galbois A, Bourcier S, Baudel JL, Margetis D, Alves M, Offenstadt G, Guidet B, Maury E. Knee area tissue oxygen saturation is predictive of 14-day mortality in septic shock. Intensive Care Med. 2012;38:976–83.

    Article  CAS  PubMed  Google Scholar 

  33. de Moura EB, Amorim FF, da Cruz Santana NA, et al. Skin mottling score as a predictor of 28-day mortality in patients with septic shock. Intensive Care Med. 2016;42(3):479–80.

    Article  PubMed  Google Scholar 

  34. Coudroy R, Jamet A, Frat JP, Veinstein A, Chatellier D, Goudet V, Cabasson S, Thille AW, Robert R. Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med. 2015;41:452–9.

    Article  PubMed  Google Scholar 

  35. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9(Suppl 4):S13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147:91–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rabello Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filho, R.R., Corrêa, T.D. (2018). Clinical Assessment. In: Pinto Lima, A., Silva, E. (eds) Monitoring Tissue Perfusion in Shock. Springer, Cham. https://doi.org/10.1007/978-3-319-43130-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43130-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43128-4

  • Online ISBN: 978-3-319-43130-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics