Skip to main content
Book cover

Sarcoma pp 383–411Cite as

Treatment Effects and Long-Term Management of Sarcoma Patients and Survivors

  • Chapter
  • First Online:

Abstract

Over the last several decades survival rates have improved tremendously, and as a result, almost 80% of children treated for cancer will be long-term survivors. However, it has also become clear that this cure has come at a price. It has been proven that survivors are at risk for several chronic or late-occurring health problems caused by their cancer or its treatment, often referred to as “late effects of therapy,” which can affect the physical, cognitive, and psychosocial health of the survivors. Long-term follow-up programs and services are essential in order to address the unique needs of this ever-growing population.

Below is a discussion of the causes and follow-up of late effects of therapy specific to patients with sarcomas. The recommendations for screening and follow-up have been taken from the Children’s Oncology Group (COG) Long-Term Follow-Up (LTFU) Guidelines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics. CA Cancer J Clin. 2014;64:83–103.

    Article  PubMed  Google Scholar 

  2. Armstrong GT, Chen Y, Yasui Y, Leisenring W, Gibson TM, Mertens AC, Stovall M, Oeffinger KC, Bhatia S, Krull KR, Nathan PC, Neglia JP, Green DM, Hudson MM, Robinson LL. Reduction in late mortality among 5-year survivors of childhood cancer. NEJM. 2016;374:833–42.

    Google Scholar 

  3. http://www.cancer.org/cancer/cancerinchildren/detailedguide/cancer-in-children-types-of-childhood-cancers. Accessed 10 Jul 2016.

  4. Kline NE, Sevier N. Solid tumors in children. J Pediatr Nurs. 2003;18:96–102.

    Article  PubMed  Google Scholar 

  5. Oeffinger KC, Mertens AC, Sklar CA, et al. Chronic health conditions and in adult survivors of childhood cancer. N Engl J Med. 2006;355:1572–82.

    Article  CAS  PubMed  Google Scholar 

  6. http://www.survivorshipguidelines.org/pdf/LTFUGuidelines_40.pdf.

  7. Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13:1–10.

    Article  PubMed  Google Scholar 

  8. Corradi F, Paolini L, De Caterina R. Ranolazine in the prevention of anthracycline cardiotoxicity. Pharmacol Res. 2014;79:88–102.

    Article  CAS  PubMed  Google Scholar 

  9. Rosa GM, Gigli L, Tagliasacchi MI, Di Iorio C, Carbone F, Nencioni A, Montecucco F, Brunelli C. Update on cardiotoxicity of anti-cancer treatments. Eur J Clin Investig. 2016;46:264–84.

    Article  Google Scholar 

  10. Lipshultz SE, Karnik R, Sambatakos P, Franco VI, Ross SW, Miller TL. Anthracycline-related cardiotoxicity in childhood cancer survivors. Curr Opin Cardiol. 2014;29:103–12.

    Article  PubMed  Google Scholar 

  11. Diamond M, Franco V. Preventing and treating anthracycline-related cardiotoxicity in survivors of childhood cancer. Curr Cancer Ther Rev. 2012;8:141–51.

    Article  CAS  Google Scholar 

  12. Lipshultz SE, Miller TL, Scully RE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30:1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jungsuwadee P, Zhao T, Stolarczyk EI, Paumi CM, Butterfield DA, St. Clair DK, Vore M. The G671V variant of MRP1/ABCC1 links doxorubicin-induced acute cardiac toxicity to disposition of the glutathione conjugate of 4-hydroxy-2-trans-nonenal. Pharmacogenet Genomics. 2012;22:273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cascales A, Sanchez-Vega B, Navarro N, Pastor-Quirante F, Corral J, Vicente V, Ayala de la Pena F. Clinical and genetic determinants of anthracycline-induced cardiac iron accumulation. Int J Cardiol. 2012;154:282–6.

    Article  PubMed  Google Scholar 

  15. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014;124:617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013;119:3555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cascales A, Pastor-Quirante F, Sanchez-Vega B, Luengo-Gil G, Corral J, Ortuno-Pacheco G, Vicente V, de la Pena FA. Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist. 2013;18:446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dube MP, Al-Saloos H, et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012;30:1422–8.

    Article  PubMed  Google Scholar 

  19. Nysom K, Holm K, Lipsitz SR, et al. Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. J Clinic Oncol. 1998;16:545–50.

    Article  CAS  Google Scholar 

  20. Legha SS, Benjamin RS, Mackay B, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med. 1982;96:133–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lipshultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 Acute Lymphoblastic Leukemia protocol. J Clinic Oncol. 2002;20:1677–82.

    Article  CAS  Google Scholar 

  22. Gabizon AA, Lyass O, Berry GJ, Wildgust M. Cardiac safety of pegylated liposomal doxorubicin (Doxil/Caelyx) demonstrated by endomyocardial biopsy in patients with advanced malignancies. Cancer Investig. 2004;22:663–9.

    Article  CAS  Google Scholar 

  23. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351:145–53.

    Article  CAS  PubMed  Google Scholar 

  24. Herman EH, Zhang J, Chadwick DP, Ferrans VJ. Comparison of the protective effects of amifostine and dexrazoxane against the toxicity of doxorubicin in spontaneously hypertensive rats. Cancer Chemother Pharmacol. 2000;45:329–34.

    Article  CAS  PubMed  Google Scholar 

  25. Miyata S, Takemura G, Kosai K, Takahashi T, Esaki M, Li L, et al. Anti-Fas gene therapy prevents doxorubicin-induced acute cardiotoxicity through mechanisms independent of apoptosis. Am J Pathol. 2010;176:687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37:837–46.

    Article  CAS  PubMed  Google Scholar 

  27. Siveski-Iliskovic N, Hill M, Chow DA, Singhal PK. Probucol protects against doxorubicin cardiomyopathy without interfering with its antitumor effect. Circulation. 1995;91:10–5.

    Article  CAS  PubMed  Google Scholar 

  28. Fischer PW, Salloum F, Das A, Hyder H, Kukreja RC. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation. 2005;111:1601–10.

    Article  CAS  Google Scholar 

  29. Li L, Takemura G, Li Y, et al. Preventive effect of erythropoietin on cardiac dysfunction in doxorubicin-induced cardiomyopathy. Circulation. 2006;113:535–43.

    Article  CAS  PubMed  Google Scholar 

  30. Jin Z, Zhang J, Zhi H, Hong B, Zhang S, Guo H, Li L. Beneficial effects of tadalafil on left ventricular dysfunction in doxorubicin-induced cardiomyopathy. J Cardiol. 2013;62:110–6.

    Article  PubMed  Google Scholar 

  31. Iarussi D, Auricchio U, Agretto A, Murano A, Giuliano M, Casale F, Indolfi P, Iacono A. Protective effect of coenzyme Q10 on anthracyclines cardiotoxicity: control study in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Mol Asp Med. 1994;15(Suppl):s207–12.

    Article  Google Scholar 

  32. Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131:561–78.

    Article  CAS  PubMed  Google Scholar 

  33. Arrick BA, Nathan CF, Griffith OW, Cohn ZA. Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J Biol Chem. 1982;257:1231–7.

    CAS  PubMed  Google Scholar 

  34. Barry E, Alvarez JA, Scully RE, Miller TL, Lipshultz SE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007;8:1039–58.

    Article  CAS  PubMed  Google Scholar 

  35. Schwartz CL, Hobbie WL, Truesdell S, Constine LC, Clark EB. Corrected QT interval prolongation in anthracycline-treated survivors of childhood cancer. J Clin Oncol. 1993;11:1906–10.

    Article  CAS  PubMed  Google Scholar 

  36. Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Futur Cardiol. 2012;8:647–70.

    Article  CAS  Google Scholar 

  37. Christenson ES, James T, Agrawal V, Park BH. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem. 2015;48:223–35.

    Article  CAS  PubMed  Google Scholar 

  38. Armstrong GT, Oeffinger KC, Chen Y, Kawashima T, Yasui Y, Leisenring W, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31:3673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20:4517–22.

    Article  CAS  PubMed  Google Scholar 

  40. Bristow MR. Mechanism of action of beta-blocking agents in heart failure. Am J Cardiol. 1997;80:26–40.

    Article  Google Scholar 

  41. Lipshultz SE, Vlach SA, Lipsitz SR, et al. Cardiac changes associated with growth hormone therapy among children treated with anthracyclines. Pediatrics. 2005;115:1613–22.

    Article  PubMed  Google Scholar 

  42. Wasilewski-Masker K, Kaste SC, Hudson MM, Esiashvili N, Mattano LA, Meacham LR. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics. 2008;121:705–13.

    Article  Google Scholar 

  43. Hochberg Z. Mechanisms of steroid impairment of growth. Horm Res. 2002;58:33–8.

    CAS  PubMed  Google Scholar 

  44. Davies JH, Evans BA, Jenney ME, Gregory JW. Skeletal morbidity in childhood acute lymphoblastic leukemia. Clin Endocrinol. 2005;63:1–9.

    Article  CAS  Google Scholar 

  45. Syed F, Khosla S. Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun. 2005;328:688–96.

    Article  CAS  PubMed  Google Scholar 

  46. Burger B, Beier R, Zimmermann M, et al. Osteonecrosis: a treatment related toxicity in childhood acute lymphoblastic leukemia (ALL)—experiences from trial ALL-BFM 95. Pediatr Blood Cancer. 2005;44:220–5.

    Article  PubMed  Google Scholar 

  47. Kadan-Lottick NS, Dinu I, Wasilewski-Masker K, et al. Osteonecrosis in adult survivors of childhood cancer. A report from the childhood cancer survivor study. J Clin Oncol. 2008;26:3038–45.

    Article  PubMed  Google Scholar 

  48. Mays D, Gerfen E, Mosher RB, Shad AT, Tercyak KP. Validation of a milk consumption stage of change algorithm among adolescent survivors of childhood cancer. J Nutr Educ Behav. 2012;44:464–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mays D, Black JD, Mosher RB, Heinly A, Shad AT, Tercyak KP. Efficacy of the Survivor Health and Resilience Education (SHARE) program to improve bone health behaviors among adolescent survivors of childhood cancer. Ann Behav Med. 2011;42:91–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lampert MH, Sugarbaker PH. Rehabilitation of patients with extremity sarcoma. In: Sugarbaker PH, Malawer MM, editors. Musculoskeletal surgery for cancer. New York: Thieme; 1992. p. 55–73.

    Google Scholar 

  51. Lewis MM. Musculoskeletal oncology: a multidisciplinary approach. In: Ragnarsson KT, editor. Rehabilitation of patients with physical disabilities caused by tumors of the musculoskeletal system. Philadelphia: WB Saunders; 1992. p. 429–48.

    Google Scholar 

  52. Shehadeh A, Noveau J, Malawer M, Henshaw R. Late complications and survival of endoprosthetic reconstruction after resection of bone tumors. Clin Orthop Relat Res. 2010;468:2885–95.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Frieden RA, Ryniker D, Kenan S, et al. Assessment of patient function after limb-sparing surgery. Arch Phys Med Rehabil. 1993;74:38–43.

    CAS  PubMed  Google Scholar 

  54. Lee SH, Shin CH. Reduced male fertility in childhood cancer survivors. Ann Pediatr Endocrinol Metab. 2013;18:168–72.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Meistrich ML, Wilson G, Mathur K, Fuller LM, Rodriguez MA, McLaughlin P, et al. Rapid recovery of spermatogenesis after mitoxantrone, vincristine, vinblastine, and prednisone chemotherapy for Hodgkin’s disease. J Clin Oncol. 1997;15:3488–95.

    Article  CAS  PubMed  Google Scholar 

  56. Buchanan JD, Fairley KF, Barrie JU. Return of spermatogenesis after stopping cyclophosphamide therapy. Lancet. 1975;2:156–7.

    Article  CAS  PubMed  Google Scholar 

  57. Hansen PV, Trykker H, Helkjoer PE, Andersen J. Testicular function in patients with testicular cancer treated with orchiectomy alone or orchiectomy plus cisplatin-based chemotherapy. J Natl Cancer Inst. 1989;81:1246–50.

    Article  CAS  PubMed  Google Scholar 

  58. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, et al. Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survival Study. J Clin Oncol. 2010;28:332–9.

    Article  PubMed  Google Scholar 

  59. Kenney LB, Cohen LE, Shnorhavorian M, Metzger ML, Lockart B, Hijiya N, et al. Male reproductive health after childhood, adolescent and young adult cancers: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:3408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.

    Article  CAS  PubMed  Google Scholar 

  61. Ash P. The influence of radiation on fertility in man. Br J Radiol. 1980;53:271–8.

    Article  CAS  PubMed  Google Scholar 

  62. Han TS, Bouloux PM. What is the optimal therapy for young males with hypogonadotropic hypogonadism? Clin Endocrinol. 2010;17:21–30.

    Google Scholar 

  63. Neal MS, Nagel K, Duckworth J, Bissessar H, Fischer MA, Portwine C, et al. Effectiveness of sperm banking in adolescents and young adults with cancer: a regional experience. Cancer. 2007;110:1125–9.

    Article  PubMed  Google Scholar 

  64. Wyns C, Curaba M, Vanabelle B, Van Langendonckt A, Donnez J. Options for fertility preservation in prepubertal boys. Hum Reprod Update. 2010;16:312–28.

    Article  PubMed  Google Scholar 

  65. Schwarzer JU, Fiedler K, v Hertwig I, Krusmann G, Wurfel W, Schleyer M, et al. Sperm retrieval procedures and intracytoplasmic spermatozoa injection with epididymal and testicular sperms. Urol Int. 2003;70:119–23.

    Article  PubMed  Google Scholar 

  66. Green DM, Sklar CA, Boice JD, Mulvihill JJ, Whitton JA, Stovall M, Yasui Y. Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27:2374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wallace WH, Thomson AB, Saran F, et al. Predicting age of ovarian failure after radiation to a field that includes the ovaries. J Radiat Oncol Biol Phys. 2005;62:738–44.

    Article  Google Scholar 

  68. Sklar C. Reproductive physiology and treatment-related loss of sex hormone production. Med Pediatr Oncol. 1999;32:2–8.

    Article  Google Scholar 

  69. Green DM, Whitton JA, Stovall M, et al. Pregnancy outcome of female survivors of childhood cancer: a report form the Childhood Cancer Survivor Study. Am J Obstet Gynecol. 2002;187:1070–80.

    Article  PubMed  Google Scholar 

  70. Boice JDJ, Tawn EJ, Winther JF, et al. Genetic effects of radiotherapy for childhood cancer. Health Phys. 2003;85:65–80.

    Article  CAS  PubMed  Google Scholar 

  71. Mulvihill JJ, Munro H, Whitton JA et al. Genetic disease in offspring of survivors of childhood and adolescent cancer. Presented at the annual meeting of the American Society of Human Genetics, October 23–27, 2007, San Diego, CA (abstr 2002).

    Google Scholar 

  72. Wallace WH, Thomson AB. Preservation of fertility in children treated for cancer. Arch Dis Child. 2003;88:493–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jones DP, Spunt SL, Green D, Springate JE. Renal late effects in patients treated for cancer in childhood: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51:724–31.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rossi R, Pleyer J, Schafers P, Kuhn N, Kleta R, Deufel T, et al. Development of ifosfamide-induced nephrotoxicity: prospective follow-up in 75 patients. Med Pediar Oncol. 1999;32:177–82.

    Article  CAS  Google Scholar 

  75. Breitz H. Clinical aspect of radiation nephropathy. Cancer Biother Radiopharm. 2004;19:359–62.

    Article  CAS  PubMed  Google Scholar 

  76. Loebstein R, Atanackovic G, Bishai R, et al. Risk factors for long-term outcome of ifosfamide-induced nephrotoxicity in children. J Clin Pharmacol. 1999;39:454–61.

    CAS  PubMed  Google Scholar 

  77. Stohr W, Paulides M, Bielack S, et al. Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer. 2007;48:447–52.

    Article  CAS  PubMed  Google Scholar 

  78. Berrak SG, Pearson M, Bielack S, et al. High-dose ifosfamide in relapsed pediatric osteosarcoma: therapeutic effects and renal toxicity. Pediatr Blood Cancer. 2005;44:215–9.

    Article  PubMed  Google Scholar 

  79. Suarez A, McDowell H, Niaudet P, et al. Long-term follow-up of ifosfamide renal toxicity in children treated for malignant mesenchymal tumors: an International Society of Pediatric Oncology report. J Clin Oncol. 1991;9:2177–82.

    Article  CAS  PubMed  Google Scholar 

  80. Fels LM, Bokemeyer C, van Rhee J, et al. Evaluation of late nephrotoxicity in long-term survivors of Hodgkin’s disease. Oncology. 1996;53:73–8.

    Article  CAS  PubMed  Google Scholar 

  81. Marina NM, Poquette CA, Cain AM, et al. Comparative renal tubular toxicity of chemotherapy regimens including ifosfamide in patients with newly diagnosed sarcomas. J Pediatr Hematol Oncol. 2000;22:112–8.

    Article  CAS  PubMed  Google Scholar 

  82. Raney B, Ensign LG, Foreman J, et al. Renal toxicity of ifosfamide in pilot regimens of the intergroup rhabdomyosarcoma study for patients with gross residual tumor. Am J Pediatr Hematol Oncol. 1994;16:286–95.

    CAS  PubMed  Google Scholar 

  83. Erdlenbruch B, Nier M, Kern W, et al. Pharmacokinetics of cisplatin and relation to nephrotoxicity in paediatric patients. Eur J Clin Pharmacol. 2001;57:393–402.

    Article  CAS  PubMed  Google Scholar 

  84. Skinner R, Pearson AD, English MW, et al. Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer. 1998;77:1677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ariceta G, Rodriguez-Soriano J, Vallo A, et al. Acute and chronic effects of cisplatin therapy on renal magnesium homeostasis. Med Pediatr Oncol. 1997;28:35–40.

    Article  CAS  PubMed  Google Scholar 

  86. Hartmann JT, Fels LM, Franzke A, et al. Comparative study of the acute nephrotoxicity from standard dose cisplatin +/− ifosfamide and high-dose chemotherapy with carboplatin and ifosfamide. Anticancer Res. 2000;20:3767–73.

    CAS  PubMed  Google Scholar 

  87. Widemann BC, Balis FM, Kempf-Bielack B, et al. High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer. 2004;100:2222–32.

    Article  CAS  PubMed  Google Scholar 

  88. Cohen EP, Robbins ME. Radiation nephropathy. Semin Nephrol. 2003;23:486–99.

    Article  PubMed  Google Scholar 

  89. Rossi R, Kleta R, Ehrlich JH. Renal involvement in children with malignancies. Pediatr Nephrol. 1999;13:153–62.

    Article  CAS  PubMed  Google Scholar 

  90. Neglia JP, Friedman DL, Yasui Y, et al. Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst. 2001;93:618–29.

    Article  CAS  PubMed  Google Scholar 

  91. Friedman DL, Whitton J, Leisenring W, Mertens AC, Hammond S, Stovall M, Donaldson SS, Meadows AT, Robinson LL, Neglia JP. Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2010;102:1083–95.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bahtia S, Sklar C. Second cancers in survivors of childhood cancer. Nat Rev Cancer. 2002;2:124–32.

    Article  Google Scholar 

  93. Henderson T, Oeffinger K, Whitton J, Leisenring W, Neglia J, Meadows A, et al. Secondary gastrointestinal cancer in childhood cancer survivors a cohort study. Ann Intern Med. 2012;156:757–66.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kumar S. Second malignant neoplasms following radiotherapy. Int J Environ Res Public Health. 2012;9:4744–59.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Henderson TO, Rajaraman P, Stovall M, Constine LS, Olive A, Smith SA, et al. Risk factors associated with secondary sarcomas in childhood cancer survivors: a report from the Childhood Cancer Survivor Study. Int J Radiat Oncol Biol Phys. 2012;84:224–30.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Schwartz B, Benadjaoud MA, Cléro E, Haddy N, El-Fayech C, Guibout C, et al. Risk of second bone sarcoma following childhood cancer: role of radiation therapy treatment. Radiat Environ Biophys. 2014;53:381–90.

    PubMed  PubMed Central  Google Scholar 

  97. Han Y, Smith MT. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front Pharmacol. 2013;4:art156.

    Article  CAS  Google Scholar 

  98. Velasco R, Bruna J. Chemotherapy induced peripheral neuropathy: an unresolved issue. Neurologia. 2010;25:116–31.

    Article  CAS  PubMed  Google Scholar 

  99. Bennett GJ. Pathophysiology and animal models of cancer-related painful peripheral neuropathy. Oncologist. 2010;15:9–12.

    Article  PubMed  Google Scholar 

  100. Cersosimo RJ. Cisplatin neurotoxicity. Cancer Treat Rev. 1989;6:195–211.

    Article  Google Scholar 

  101. Earl HM, Connolly S, Latoufis C, Eagle K, Ash CM, Fowler C, Souhami RL. Long-term neurotoxicity of chemotherapy in adolescents and young adults treated for bone and soft tissue sarcomas. Sarcoma. 1998;2:97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grewal S, Merchant T, Reymond R, McInerney M, Hodge C, Shearer P. Auditory late effects of childhood cancer therapy: a report from the Children’s Oncology Group. Pediatrics. 2010;125:938–50.

    Article  Google Scholar 

  103. Dolan ME, Newbold KG, Nagasubramanian R, et al. Heritability and linkage of analysis of sensitivity to cisplatin-induced cytotoxicity. Cancer Res. 2004;64:4353–6.

    Article  CAS  PubMed  Google Scholar 

  104. Association AS-L-H. Guidelines for the audiologic management of individuals receiving cochleotoxic drug therapy. ASHA. 1994;35:11–9.

    Google Scholar 

  105. Nagy JL, Adelstein DJ, Newman CW, Rybicki LA, Rice TW, Lavertu P. Cisplatin ototoxicity: the importance of baseline audiometry. Am J Clin Oncol. 1999;22:305–8.

    Article  CAS  PubMed  Google Scholar 

  106. Currier JM, Jobe-Shields LE, Phipps S. Stressful life events and posttraumatic stress symptoms in children with cancer. J Trauma Stress. 2009;22:28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kazak AE. Posttraumatic distress in childhood cancer survivors and their parents. Med Pediatr Oncol. 1998;S1:60–8.

    Article  Google Scholar 

  108. Stuber M, Kazak AE, Meeske K, Barakat L, Guthrie D, Garnier H, et al. Predictors of posttraumatic stress symptoms in childhood cancer survivors. Pediatrics. 1997;100:958–64.

    Article  CAS  PubMed  Google Scholar 

  109. Landolt MA, Vollrath M, Ribi K, Gnehm HE, Sennhauser FH. Incidence and association of child and parental posttraumatic stress symptoms in pediatric patients. J Child Psychol Psychiatry. 2003;44:1199–207.

    Article  PubMed  Google Scholar 

  110. Phipps S, Long A, Hudson M, Rai SN. Symptoms of post-traumatic stress in children with cancer and their parents: effects of informant and time from diagnosis. Pediatr Blood Cancer. 2005;45:952–9.

    Article  PubMed  Google Scholar 

  111. Schrag NM, McKeown RE, Jackson KL, Cuffe SP, Neuberg RW. Stress-related mental disorders in childhood cancer survivors. Pediatr Blood Cancer. 2008;50:98–103.

    Article  PubMed  Google Scholar 

  112. Barakat LP, Kazak AE, Gallagher PR, Meeske K, Stuber M. Posttraumatic stress symptoms and stressful life events predict the long-term adjustment of survivors of childhood cancer and their mothers. J Clin Psychol Med Settings. 1997;22:843–59.

    CAS  Google Scholar 

  113. Hodges WF, London J, Crolwell JB. Stress in parents and late elementary age children in divorced and intact families and child adjustment. J Divorce Remarriage. 1990;14:63–79.

    Article  Google Scholar 

  114. Gerhardt CA, Yopp JM, Leininger L, Valerius KS, Correll J, Vannatta K, Noll RB. Brief report: post-traumatic stress during emerging adulthood in survivors of pediatric cancer. J Pediatr Psychol. 2007;32:1018–23.

    Article  PubMed  Google Scholar 

  115. Nir Y. Post-traumatic stress disorder in children with cancer. In: Eth S, Pynoos R, editors. Posttraumatic stress disorder in children. Washington: American Psychiatric Press; 1985. p. 123–32.

    Google Scholar 

  116. Meeske KA, Patel SK, Palmer SN, Nelson MB, Parow AM. Factors associated with health related quality of life in pediatric cancer survivors. Pediatr Blood Cancer. 2007;49:298–305.

    Article  PubMed  Google Scholar 

  117. Archbold KH, Pituch KJ, Panahi P, et al. Symptoms of sleep disturbances among children at two general pediatric clinics. J Pediatr. 2002;140:97–102.

    Article  PubMed  Google Scholar 

  118. Owens J. Classification and epidemiology of childhood sleep disorders. Prim Care. 2008;35:533–46.

    Article  PubMed  Google Scholar 

  119. Mulrooney DA, Ness KK, Neglia JP, et al. Fatigue and sleep disturbance in adult survivors of childhood cancer: a report from the childhood cancer survivor study (CCSS). Sleep. 2008;31:271–81.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rosen G, Brand SR. Sleep in children with cancer: case review of 70 children evaluated in a comprehensive pediatric sleep center. Support Care Cancer. 2011;19:985–94.

    Article  PubMed  Google Scholar 

  121. Kaleyias J, Manley P, Kothare SV. Sleep disorders in children with cancer. Semin Pediatr Neurol. 2012;19:25–34.

    Article  PubMed  Google Scholar 

  122. Zebrack BJ, Stuber ML, Meeske KA, et al. Perceived positive impact of cancer among long-term survivors of childhood cancer: a report from the childhood cancer survivor study. Psychooncology. 2012;21:630–9.

    Article  PubMed  Google Scholar 

  123. Kirchhoff AC, Krull KR, Ness KK, et al. Occupational outcomes of adult childhood cancer survivors: a report from the childhood cancer survivor study. Cancer. 2011;117:3033–44.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kirchhoff AC, Leisenring W, Krull KR, et al. Unemployment among adult survivors of childhood cancer: a report from the childhood cancer survivor study. Med Care. 2010;48:1015–25.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Park ER, Kirchhoff AC, Zallen JP, et al. Childhood Cancer Survivor Study participants’ perceptions and knowledge of health insurance coverage: implications for the Affordable Care Act. J Cancer Surviv. 2012;6:251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schwartz L, Rowland J, Shad A. Pediatric cancer survivors: moving beyond cure. Pediatric psycho-oncology: a quick reference on the psychosocial dimensions of cancer symptom management. 2nd ed. Oxford: Oxford University Press; 2015.

    Google Scholar 

  127. Tercyak KP, Donze JR, Prahlad S, Mosher RB, Shad AT. Multiple behavioral risk factors among adolescent survivors of childhood cancer in the Survivor Health and Resilience Education (SHARE) program. Pediatr Blood Cancer. 2006;47:825–30.

    Article  PubMed  Google Scholar 

  128. Tercyak KP, Donze JR, Prahlad S, Mosher RB, Shad AT. Identifying, recruiting, and enrolling adolescent survivors of childhood cancer into a randomized controlled trial of health promotion: preliminary experiences in the Survivor Health and Resilience Education (SHARE) program. J Pediatr Psychol. 2006;31:252–61.

    Article  PubMed  Google Scholar 

  129. Landier W, CureSearch COG. Establishing and enhancing services for childhood cancer survivors: long-term follow-up program resource guide. Available from: http://www.survivorshipguidelines.org/pdf/LTFUResourceGuide.pdf

  130. Shad A, Myers SN, Hennessy K. Late effects in cancer survivors: “The shared care model”. Curr Oncol Rep. 2012;14:182–90.

    Article  PubMed  Google Scholar 

  131. Eiser C, Absolom K, Greenfield D, et al. Follow-up after childhood cancer: evaluation of a three-level model. Eur J Cancer. 2006;42:3186–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Szalontay M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Szalontay, L., Shad, A. (2017). Treatment Effects and Long-Term Management of Sarcoma Patients and Survivors. In: Henshaw, R. (eds) Sarcoma. Springer, Cham. https://doi.org/10.1007/978-3-319-43121-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43121-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43119-2

  • Online ISBN: 978-3-319-43121-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics