Skip to main content

Chemotherapy and Other Systemic Approaches to Adult Sarcomas

  • Chapter
  • First Online:
Sarcoma
  • 1279 Accesses

Abstract

Prior to the 1970s, surgery and radiation therapy was considered the “gold standard” for the primary treatment of most extremity bone and soft-tissue sarcomas. It was understood, however, that surgery alone was associated with a high incidence of local recurrence and that approximately half of patients with soft-tissue sarcomas and most patients with bone sarcomas would develop distant metastases and die from disease. Systemic cytotoxic chemotherapy was slowly introduced and subsequently shown to be an effective sarcoma treatment. Standard multi-drug chemotherapy protocols have been developed and used successfully in both the neoadjuvant and adjuvant setting, allowing limb-sparing surgery for most patients and improved long-term survival.More recently,great interest in other therapies, specifically in the areas of checkpoint-inhibitor based immunotherapy, tyrosine kinase inhibitors,anddriver targets and inhibitors has led to new treatment options for sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. O’Bryan RM, Luce JK, Talley RW, Gottlieb JA, Baker LH, Bonadonna G. Phase II evaluation of adriamycin in human neoplasia. Cancer. 1973;32(1):1–8.

    Article  PubMed  Google Scholar 

  3. Wang B, Yu X, Xu S, Xu M. Combination of cisplatin, ifosfamide, and adriamycin as neoadjuvant chemotherapy for extremity soft tissue sarcoma: a report of twenty-eight patients. Medicine (Baltimore). 2016;95(4):2611.

    Article  CAS  Google Scholar 

  4. Huh WW, Jaffe N, Durand JB, Munsell MF, Herzog CE. Comparison of doxorubicin cardiotoxicity in pediatric sarcoma patients when given with dexrazoxane versus as continuous infusion. Pediatr Hematol Oncol. 2010;27(7):546–57.

    Article  CAS  PubMed  Google Scholar 

  5. Nielsen OS, Dombernowsky P, Mouridsen H, et al. Epirubicin is not superior to doxorubicin in the treatment of advanced soft tissue sarcomas. The experience of the EORTC Soft Tissue and Bone Sarcoma Group. Sarcoma. 2000;4(1–2):31–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Judson IRJ, Harris M, Blay JY, van Hoesel Q, le Cesne A. Randomised phase II trial of pegylated liposomal doxorubicin (DOXIL/CAELYX) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 2001;37(7):870–7.

    Article  CAS  PubMed  Google Scholar 

  7. Skubitz K. Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Invest. 2003;21(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  8. Skubitz KM, Haddad PA. Paclitaxel and pegylated-liposomal doxorubicin are both active in angiosarcoma. Cancer. 2005;104(2):361–6.

    Google Scholar 

  9. Lorusso D, Di Stefano A, Carone V, Fagotti A, Pisconti S, Scambia G. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol. 2007;18(7):1159–64.

    Google Scholar 

  10. Bramwell VH, Mouridsen H, Santoro A, et al. Cyclophosphamide versus ifosfamide: final report of a randomized phase II trial in adult soft tissue sarcomas. Eur J Cancer Clin Oncol. 1987;23(3):311–21.

    Article  CAS  PubMed  Google Scholar 

  11. Patel SR, Vadhan-Raj S, Papadopolous N, et al. High-dose ifosfamide in bone and soft tissue sarcomas: results of phase II and pilot studies—dose-response and schedule dependence. J Clin Oncol. 1997;15:2378.

    Article  CAS  PubMed  Google Scholar 

  12. Antman K, Crowley J, Balcerzak SP, et al. An intergroup phase III randomized study of doxorubicin and dacarbazine with or without ifosfamide and mesna in advanced soft tissue and bone sarcomas. J Clin Oncol. 1993;11(7):1276–85.

    Article  CAS  PubMed  Google Scholar 

  13. Lorigan P, Verweij J, Papai Z, et al. Phase III trial of two investigational schedules of ifosfamide compared with standard dose doxorubicin. J Clin Oncol. 2007;25:3144–50.

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen OS, Judson I, van Hoesel Q, et al. Effect of high-dose ifosfamide in advanced soft tissue sarcomas. A multicentre phase II study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 2000;36(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  15. David KA, Picus J. Evaluating risk factors for the development of ifosfamide encephalopathy. Am J Clin Oncol. 2005;28(3):277–80.

    Article  CAS  PubMed  Google Scholar 

  16. Hansen HO, Yuen C. Aprepitant-associated ifosfamide neurotoxicity. J Oncol Pharm Pract. 2010;16:137–8.

    Article  Google Scholar 

  17. Patel PN. Methylene blue for management of ifosfamide-induced encephalopathy. Ann Pharmacother. 2006;40(2):299–303.

    Article  CAS  PubMed  Google Scholar 

  18. Talbot SM, Keohan ML, Hesdorffer M, et al. A phase II trial of temozolomide in patients with unresectable or metastatic soft tissue sarcoma. Cancer. 2003;98:1942–6.

    Article  CAS  PubMed  Google Scholar 

  19. Patel SR, Vadhan-Raj S, Burgess MA, et al. Results of two consecutive trials of dose-intensive chemotherapy with doxorubicin and ifosfamide in patients with sarcomas. Am J Clin Oncol. 1998;21(3):317–21.

    Article  CAS  PubMed  Google Scholar 

  20. Judsen I, Verweij J, Gelderblom H, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014;15:4:415–23

    Google Scholar 

  21. Hensley ML, Blessing JA, Mannel R, Rose PG. Fixed-dose rate gemcitabine plus docetaxel as first-line therapy for metastatic uterine leiomyosarcoma: a Gynecologic Oncology Group phase II trial. Gynecol Oncol. 2008;109(3):329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maki RG, Wathen JK, Patel SR, et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. J Clin Oncol. 2007;25:2755–63.

    Article  CAS  PubMed  Google Scholar 

  23. Maki RG, Hensley ML, Wathen JK, et al. A SARC multicenter phase III study of gemcitabine (G) vs. gemcitabine and docetaxel (G + D) in patients (pts) with metastatic soft tissue sarcomas (STS). J Clin Oncol (Meeting Abstracts). 2006;24(18 Suppl):523S.

    Google Scholar 

  24. Seddon B, Whelan J, Strauss SJ, Leahy MG, et al. GeDDiS: a prospective randomised controlled phase III trial of gemcitabine and docetaxel compared with doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft tissue sarcomas (EudraCT 2009-014907-29). J Clin Oncol. 2015;33(S1):abstract 10500.

    Google Scholar 

  25. Penel N, Bui B, Bay J-O, et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma: the ANGIOTAX Study. J Clin Oncol. 2008;26(32):5269–74.

    Google Scholar 

  26. Italiano A, Cioffi A, Penel N, et al. Comparison of doxorubicin and weekly paclitaxel efficacy in metastatic angiosarcomas. Cancer. 2012;118:3330–6.

    Google Scholar 

  27. The ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO clinical practice guidelines. Ann Oncol. 2014;25(Suppl 3):iii102–12.

    Google Scholar 

  28. Hensley M, Maki R, Venkatraman E, et al. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J Clin Oncol. 2002;20:2824–31.

    Google Scholar 

  29. Garcia-del-Muro X, Lopez-Pousa A, Maurel J, et al. Randomized phase II study comparing gemcitabine plus dacarbazine versus dacarbazine alone in patients with previously treated soft tissue sarcoma: a Spanish Group for Research on Sarcomas Study. J Clin Oncol. 2011;29:2528–33.

    Google Scholar 

  30. Garcia-del-Muro X, Lopez-Pousa A, Martin J, et al. A phase II trial of temozolomide as a 6-week, continuous, oral schedule in patients with advanced soft tissue sarcoma: a study by the Spanish Group for Research on Sarcomas. Cancer. 2005;104(8):1706–12.

    Google Scholar 

  31. van der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379(9829):1879–86.

    Article  PubMed  CAS  Google Scholar 

  32. Sleijfer S, Ray-Coquard I, Papai Z, et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European Organisation for Research and Treatment of Cancer–Soft Tissue and Bone Sarcoma Group (EORTC study 62043). J Clin Oncol. 2009;27:3126–32.

    Article  CAS  PubMed  Google Scholar 

  33. Blay JYIA, Italiano A, Ray-Coquard I, et al. Long-term outcome and effect of maintenance therapy in patients with advanced sarcoma treated with trabectedin: an analysis of 181 patients of the French ATU compassionate use program. BMC Cancer. 2013;13:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. FDA approves Trabectedin for two soft tissue sarcomas: Medscape, October 23, 2015.

    Google Scholar 

  35. Samuels BL, Chawla S, Patel S, et al. Clinical outcomes and safety with trabectedin therapy in patients with advanced soft tissue sarcomas following failure of prior chemotherapy: results of a worldwide expanded access program study. Ann Oncol. 2013;24:1703–9.

    Google Scholar 

  36. Demetri GD, von Mehren M, Jones RL, et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J Clin Oncol. 2016;34(8):786–93.

    Google Scholar 

  37. Schwartz GK. Trabectedin and the L-sarcomas: a decade-long odyssey. J Clin Oncol. 2016;34:769–71.

    Google Scholar 

  38. Paz-Ares L, López-Pousa A, Poveda A, et al. Trabectedin in pre-treated patients with advanced or metastatic soft tissue sarcoma: a phase II study evaluating co-treatment with dexamethasone. Invest New Drugs. 2012;30(2):729–40.

    Article  CAS  PubMed  Google Scholar 

  39. Schöffski P, Ray-Coquard IL, Cioffi A. Activity of eribulin mesylate in patients with soft-tissue sarcoma: a phase 2 study in four independent histological subtypes. Lancet Oncol. 2011;12(11):1045–52.

    Article  PubMed  CAS  Google Scholar 

  40. Schoffski P, Maki RG, Italiano A, et al. Randomized, open-label, multicenter, phase III study of eribulin versus dacarbazine in patients (pts) with leiomyosarcoma (LMS) and adipocytic sarcoma (ADI). J Clin Oncol. 2015;33:Abstract 10502.

    Article  Google Scholar 

  41. Tap WD, Jones RL, Van Tine BA, et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388(10043):488–97.

    Article  CAS  PubMed  Google Scholar 

  42. FDA Approval. Olaratumab October 19, 2016. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm526087.htm

  43. Rutkowski P, Van Glabbeke M, Rankin CJ, et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J Clin Oncol. 2010;28(10):1772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ugurel S, Mentzel T, Utikal J, et al. Neoadjuvant imatinib in advanced primary or locally recurrent dermatofibrosarcoma protuberans: a multicenter phase II DeCOG trial with long term follow-up. Clin Cancer Res. 2014;20(2):499–510.

    Article  CAS  PubMed  Google Scholar 

  45. Stacchiotti S, Negri T, Zaffaroni N. Sunitinib in advanced alveolar soft part sarcoma: evidence of a direct antitumor effect. Ann Oncol. 2011;7:1682–90.

    Article  Google Scholar 

  46. Kummar S, Allen D, Monks A, et al. Cediranib for metastatic alveolar soft part sarcoma. J Clin Oncol. 2013;31(18):2296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park M, Patel SR, Ludwig JA, et al. Activity of temozolomide and bevacizumab in the treatment of locally advanced, recurrent, and metastatic hemangiopericytoma and malignant solitary fibrous tumor. Cancer. 2011;117(21):4939–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stacchiotti S, Tortoreto M, Bozzi F, et al. Dacarbazine in solitary fibrous tumor: a case series analysis and preclinical evidence vis-a-vis temozolomide and antiangiogenics. Clin Cancer Res. 2013;19(18):5192–201.

    Article  CAS  PubMed  Google Scholar 

  49. Stacchiotti S, Negri T, Libertini M, et al. Sunitinib malate in solitary fibrous tumor (SFT). Ann Oncol. 2012;23(12):3171–9.

    Article  CAS  PubMed  Google Scholar 

  50. Wagner AJ, Malinowska-Kolodziej I, Morgan JA. Clinical activity of mTOR inhibition with sirolimus in malignant perivascular epithelioid cell tumors: targeting the pathogenic activation of mTORC1 in tumors. J Clin Oncol. 2010;28(5):835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gadgeel SM, Bepler G. Crizotinib: an anaplastic lymphoma kinase inhibitor. Future Oncol. 2011;7(8):947–53.

    Article  CAS  PubMed  Google Scholar 

  52. Butrynski JE, D’Adamo DR, Hornick JL, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363(18):1727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tierney J. Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: meta-analysis of individual data. Sarcoma meta-analysis collaboration. Lancet. 1997;350:1647–54.

    Article  Google Scholar 

  54. Frustaci S, Gherlinzoni F, De Paoli A, et al. Adjuvant chemotherapy for adult soft tissue sarcomas of the extremities and girdles: results of the Italian randomized cooperative trial. J Clin Oncol. 2001;19:1238–47.

    Article  CAS  PubMed  Google Scholar 

  55. Frustaci S, De Paoli A, Bidoli E, et al. Ifosfamide in the adjuvant therapy of soft tissue sarcomas. Oncology. 2003;65(Supplement 2):80–4.

    Article  CAS  PubMed  Google Scholar 

  56. Woll PJ, Reichardt P, Le Cesne A, et al. Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): a multicentre randomised controlled trial. Lancet. Oncology2012;13(10):1045–54.

    Google Scholar 

  57. Afonso SL, Ramos LA, Viani GA, et al. Improvement in the survival for adult soft tissue sarcoma with adjuvant anthracycline chemotherapy combination: a meta-analysis and metaregression. J Clin Oncol. 2010;28(ASCO Pubs 15):10042.

    Article  Google Scholar 

  58. Gronchi A, Frustaci S, Mercuri M, et al. Short, full-dose adjuvant chemotherapy in high-risk adult soft tissue sarcomas: a randomized clinical trial from the Italian Sarcoma Group and the Spanish Sarcoma Group. J Clin Oncol. 2012;30:850–6.

    Article  CAS  PubMed  Google Scholar 

  59. D’Adamo A. Is adjuvant chemotherapy useful for soft-tissue sarcomas? Lancet Oncol. 2012;13(10):968–70.

    Article  PubMed  Google Scholar 

  60. National Comprehensive Cancer Network.Soft Tissue Sarcoma (Version 2016). https://www.nccn.org/professionals/physician_gls/PDF/sarcoma.pdf

    Google Scholar 

  61. Gortzak E, Rouesse J, Verwey J. Randomized phase II study of neoadjuvant chemotherapy in soft tissue sarcomas in adults. Protocol 62874. Eur J Cancer. 1993;29(6):S183.

    Article  Google Scholar 

  62. O’Sullivan B, Davis AM, Turcotte R, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet. 2002;359(9325):2235–41.

    Article  PubMed  Google Scholar 

  63. Davis AM, O’Sullivan B, Turcotte R, et al. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol. 2005;75:48–53.

    Article  PubMed  Google Scholar 

  64. Pisters PW, O’Sullivan B, Maki RG. Evidence-based recommendations for local therapy for soft tissue sarcomas. J Clin Oncol. 2007;25:1003–8.

    Article  PubMed  Google Scholar 

  65. Verhoef C, de Wilt JH, Grunhagen DJ, et al. Isolated limb perfusion with melphalan and TNF-α in the treatment of extremity sarcoma. Curr Treat Options Oncol. 2007;8(6):417–27.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Issels RD, Lindner LH, Verweij J, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11(6):561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Issels RD, Lindner LH. Regional hyperthermia for high-risk soft tissue sarcoma treatment: present status and next questions. Curr Opin Oncol. 2016;28:447–52.

    Article  CAS  PubMed  Google Scholar 

  68. Grem JL, King SA, Wittes RE, et al. The role of methotrexate in osteosarcoma. J Natl Cancer Inst. 1988;80:626–55.

    Article  CAS  PubMed  Google Scholar 

  69. Rosen G, Nirenberg A. Chemotherapy for osteogenic sarcoma: an investigative method, not a recipe. Cancer Treat Rep. 1982;66:1687–97.

    CAS  PubMed  Google Scholar 

  70. Rosen G, Eilber FC, Eckhardt J. Guidelines for chemotherapy of osteosarcoma. Second Osteosarcoma Research Conference. Bologna, Italy, 1996.

    Google Scholar 

  71. Jaffe N, Gorlick R. High-dose methotrexate in osteosarcoma: let the questions surcease—time for final acceptance. J Clin Oncol. 2008;26(27):4365–6.

    Article  CAS  PubMed  Google Scholar 

  72. Miser JS, Kinsella TJ, Triche TJ, et al. Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J Clin Oncol. 1987;5(8):1191–8.

    Article  CAS  PubMed  Google Scholar 

  73. Marti C, Kroner T, Remagen W, Berchtold W, Cserhati M, Varini M. High-dose ifosfamide in advanced osteosarcoma. Cancer Treat Rep. 1985;69:115–7.

    CAS  PubMed  Google Scholar 

  74. Bramwell VH, Burgers M, Sneath R, Souhami R. A comparison of two short intensive adjuvant chemotherapy regimens in operable osteosarcoma of limbs in children and young adults: the first study of the European Osteosarcoma Intergroup. J Clin Oncol. 1992;10(10):1579–91.

    Article  CAS  PubMed  Google Scholar 

  75. Souhami RL, Craft AW, Van der Eijken JW. Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. Lancet. 1997;350(9082):911–7.

    Article  CAS  PubMed  Google Scholar 

  76. Malawer M, Link MP, Donaldson SS. Sarcomas of bone. In: Devita H, Rosenberg SA, editors. Cancer: principles and practice of oncology. Philadelphia: Lippincott-Raven; 1997. p. 1789–852.

    Google Scholar 

  77. Link MP, Eilber F. Osteosarcoma. In: Poplack DG, Pizzo PA, editors. Principles and practice of pediatric oncology. Philadelphia: Lippincott-Raven; 1997. p. 889–920.

    Google Scholar 

  78. Carter S. Adjuvant chemotherapy in osteogenic sarcoma: the triumph that isn’t? J Clin Oncol. 1984;2:147–8.

    Article  CAS  PubMed  Google Scholar 

  79. Taylor WE, Ivins JC, Pritchard DI, et al. Trends and variability in survival among patients with osteosarcoma. A 7-year update. Mayo Clin Proc. 1985;60:91–104.

    Article  CAS  PubMed  Google Scholar 

  80. Eilber F, Giuliano A, Eckhardt J et al. Adjuvant chemotherapy for osteosarcoma. A randomized prospective trial. J Clin Oncol. 1987;5:21–26.

    Google Scholar 

  81. Link MP, Goorin AM, Miser AW, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med. 1986;314:1600–6.

    Article  CAS  PubMed  Google Scholar 

  82. Link MP, Goorin AM, Horowitz M, et al. Adjuvant chemotherapy of high grade osteosarcoma of the extremity: updated results of the multi-institutional osteosarcoma study. Clin Orthop Relat Res. 1991;270:8–14.

    Google Scholar 

  83. Rosen G, Marcove RC, Caparros B. Primary osteosarcoma. The rationale for preoperative chemotherapy and delayed surgery. Cancer. 1979;43:2163–77.

    Article  CAS  PubMed  Google Scholar 

  84. Priebat DA, Trehan PS, Malawer MM, et al. Induction chemotherapy for sarcomas of the extremities. In: Sugarbaker PH, Malawer MM, editors. Musculoskeletal surgery for cancer. New York, NY: Thieme; 1992. p. 96–120.

    Google Scholar 

  85. Epelman S, Siebel N, Melaragno R, et al. Treatment of newly diagnosed high-grade osteosarcoma with ifosfamide, Adriamycin, and cisplatin without high-dose methotrexate. Proc Am Soc Clin Oncol. 1995;14:439.

    Google Scholar 

  86. Goorin AM, Schwartzentruber DJ, Devidas M, et al. Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma, Pediatric Oncology Group Study, POG-8651. J Clin Oncol. 2003;21:1574–80.

    Article  CAS  PubMed  Google Scholar 

  87. Rosen G, Caparros B, Huvos AG, et al. Preoperative chemotherapy for osteosarcoma. Selection of postoperative adjuvant chemotherapy based on response of primary tumor to preoperative chemotherapy. Cancer. 1982;49:1221–39.

    Article  CAS  PubMed  Google Scholar 

  88. Winkler K, Beron G, Delling G, et al. Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on tumor response. J Clin Oncol. 1988;6:329–37.

    Article  CAS  PubMed  Google Scholar 

  89. Gherlinzoni M, Mercuri M, Avella M, et al. Surgical implications of neoadjuvant chemotherapy the experience at the Instituto Orthopedico Rizzoli in osteosarcoma and malignant fibrous histiocytoma. In: Jacquillat C, Weil M, Khayat D, editors. Neoadjuvant chemotherapy John Libbey Eurotext; 1988. p. 541–4.

    Google Scholar 

  90. Bacci G, Picci P, Ferrari S, et al. Primary chemotherapy and delayed surgery for nonmetastatic osteosarcoma of the extremities. Cancer. 1993;72:3227–38.

    Article  CAS  PubMed  Google Scholar 

  91. Provisor AJ, Ettinger LJ, Nachman JB, et al. Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the Children’s Cancer Group. J Clin Oncol. 1997;15:76–84.

    Article  CAS  PubMed  Google Scholar 

  92. Meyers PA, Heller G, Healey J, et al. Chemotherapy for non-metastatic osteogenic sarcoma: the Memorial Sloan Kettering experience. J Clin Oncol. 1992;10:5–15.

    Article  CAS  PubMed  Google Scholar 

  93. Bacci G, Bertoni F, Longhi A, et al. Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity. Histologic response to preoperative chemotherapy correlates with histologic subtype of the tumor. Cancer. 2003;97(12):3068–75.

    Article  CAS  PubMed  Google Scholar 

  94. Hauben EI, Weeden S, Pringle J, Van Marck EA, Hogendoorn PC. Does the histological subtype of high-grade central osteosarcoma influence the response to treatment with chemotherapy and does it affect overall survival? A study on 570 patients of two consecutive trials of the European Osteosarcoma Intergroup. Eur J Cancer. 2002;38(9):1218–25.

    Article  CAS  PubMed  Google Scholar 

  95. Bielack SS, Kempf-Bielack B, Delling G. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776–90.

    Article  PubMed  Google Scholar 

  96. Benjamin RS, Patel S, Armen CH, et al. The value of ifosfamide in postoperative neoadjuvant chemotherapy of osteosarcoma. Proc Am Soc Clin Oncol. 1995;14:1690a.

    Google Scholar 

  97. Meyers PA, Gorlick R, Heller G, et al. Intensification of preoperative chemotherapy for osteogenic sarcoma: results of the Memorial Sloan Kettering T-12 protocol. J Clin Oncol. 1998;16:2452–8.

    Article  CAS  PubMed  Google Scholar 

  98. Lewis IJ, Nooij MA, Whelan J, et al. Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized phase III trial of the European Osteosarcoma Intergroup. J Natl Cancer Inst. 2007;99:112–28.

    Article  CAS  PubMed  Google Scholar 

  99. Jaffe N, Knapp J, Chuang VP, et al. Osteosarcoma: intraarterial treatment of the primary tumor with cisdiammine dichloroplatinum II (CDP). Angiographic, pathologic, and pharmacologic studies. Cancer. 1983;51:402–7.

    Article  CAS  PubMed  Google Scholar 

  100. Jaffe N, Raymond AK, Ayala A, et al. Effect of cumulative courses of intraarterial cis-diammine-dichloroplatinum II on the primary tumor in pediatric osteosarcoma. J Clin Oncol. 1985;3:1101–4.

    Article  CAS  PubMed  Google Scholar 

  101. Bacci G, Picci P, Avella M, et al. Effect of intraarterial versus intravenous cisplatinum in addition to systemic Adriamycin and high-dose methotrexate on histologic tumor response of osteosarcoma of the extremities. J Chemother. 1992;4:189–95.

    Article  CAS  PubMed  Google Scholar 

  102. Meyers PA, Schwartz CL, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005 Mar 20;23(9):2004-11.

    Google Scholar 

  103. Meyers PA, Schwartz CL, Krailo MD, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(4):633–8.

    Article  CAS  PubMed  Google Scholar 

  104. Chou AJ, Kleinerman ES, Krailo MD, et al. Addition of muramyl tri-peptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer. 2009;115:5339–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shafer E. FDA panel rejects mifamurtide for osteosarcoma in children. HemOnc Today 2007 (June 1).

    Google Scholar 

  106. Whelan JS, Bielack SS, Marina N, et al. EURAMOS-1. An international randomised study for osteosarcoma: results from prerandomisation treatment. Ann Oncol. 2015;26(2):407–14.

    Article  CAS  PubMed  Google Scholar 

  107. Bielack SS, Smeland S, Whelan JS, et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J Clin Oncol. 2015;33(20):2279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marina NM, Smeland SS, Bielack SS, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–408.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kleinerman E. Maximum benefit of chemotherapy for osteosarcoma achieved-what are the next steps? Lancet Oncol. 2016;17(10):1340–2.

    Article  PubMed  Google Scholar 

  110. Isakoff MS, Bielack SS, Meltzer P, Grlick R. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33:3029–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2013;40(4):523–32.

    Article  PubMed  Google Scholar 

  112. Marina N, Bielack S, Whelan J. International collaboration is feasible in trials for rare conditions: the EURAMOS experience. Cancer Treat Rep. 2009;152:339–53.

    Article  CAS  Google Scholar 

  113. Fox E, Patel S, Wathen JK. Phase II study of sequential gemcitabine followed by docetaxel for recurrent Ewing sarcoma, osteosarcoma, or unresectable or locally recurrent chondrosarcoma: results of sarcoma alliance for research through collaboration study 003. Oncologist. 2012;17(3):321.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Grignani G, Palmerini E, Dileo P, et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy. An Italian Sarcoma Group study. Ann Oncol. 2011;23:508–16.

    Article  PubMed  Google Scholar 

  115. Grignani G, Palmerini E, Ferraresi V, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  116. Benjamin R. Osteosarcoma: better treatment through better trial design. Lancet Oncol.16(1):12-13. 2015.

    Google Scholar 

  117. Kolb EA, Gorlick R, Reynolds CP. Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatr Blood Cancer. 2013;60(8):1325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schoffski P, Ray-Coquard IL, Cioffi A, et al. Activity of eribulin mesylate in patients with soft-tissue sarcoma: a phase 2 study in four independent histological subtypes. Lancet Oncology 12;11:1045-1052, 2011.

    Google Scholar 

  119. Zoledronic acid and combination chemotherapy in treating patients with newly diagnosed metastatic osteosarcoma. Children’s Oncology Group-National Cancer Institute. ClinicalTrials.gov Identifier: NCT00742924. https://clinicaltrials.gov/ct2/show/NCT00742924. Accessed 4 June 2014.

  120. Kolb EA, Gorlick R, Billups CA. Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatr Blood Cancer. 2014;61(10):1816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roth M, Barris DM, Piperdi S, et al. Targeting glycoprotein NMB with antibody-drug conjugate, Glembatumumab vedotin, for the treatment of osteosarcoma. Pediatr Blood Cancer. 2016;63(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  122. Roth M, Linkowski M, Tarim J, et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 2014;120(4):548–54.

    Google Scholar 

  123. Balamuth NJ, Womer RB. Ewing’s sarcoma. Lancet Oncol. 2010;11(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  124. Gaspar N, Hawkins DS, Dirksen U, et al. Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol. 2015;33(27):3036–46.

    Article  CAS  PubMed  Google Scholar 

  125. Karski EE, Matthay KK, Neuhaus JM, Goldsby RE, Dubois SG. Characteristics and outcomes of patients with Ewing sarcoma over 40 years of age at diagnosis. Cancer Epidemiol. 2013;37(1):29–33.

    Article  PubMed  Google Scholar 

  126. Verrill MWJI, Wiltshaw E. The use of paediatric chemotherapy protocols at full dose is both a rational and feasible treatment strategy in adults with Ewing’s family tumours. Ann Oncol. 1997;8(11):1099–105.

    Article  CAS  PubMed  Google Scholar 

  127. Ahmed SK, Robinson SI, Okuno SH, Rose PS, Laack NN. Adult Ewing sarcoma: survival and local control outcomes in 102 patients with localized disease. Sarcoma. 2013;2013:681425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ahmed SK, Robinson SI, Okuno SH, Rose PS, Issa Laack NN. Adult Ewing sarcoma: survival and local control outcomes in 36 patients with metastatic disease. Am J Clin Oncol. 2014;37(5):423–9.

    Article  CAS  PubMed  Google Scholar 

  129. Razek A, Perez CA, Tefft M, et al. Intergroup Ewing’s Sarcoma Study: local control related to radiation dose, volume, and site of primary lesion in Ewing’s sarcoma. Cancer. 1980;46(3):516–21.

    Article  CAS  PubMed  Google Scholar 

  130. Burgert Jr EO, Nesbit ME, Garnsey LA, et al. Multimodal therapy for the management of nonpelvic, localized Ewing’s sarcoma of bone: intergroup study IESS-II. J Clin Oncol. 1990;8(9):1514–24.

    Article  PubMed  Google Scholar 

  131. Wexler LH, TF DL, Tsokos M, et al. Ifosfamide and etoposide plus vincristine, doxorubicin, and cyclophosphamide for newly diagnosed Ewing's sarcoma family of tumors. Cancer. 1996;78(4):901–11.

    Article  CAS  PubMed  Google Scholar 

  132. Yock TI, Krailo M, Fryer CJ, et al. Local control in pelvic Ewing sarcoma: analysis from INT-0091—a report from the Children’s Oncology Group. J Clin Oncol. 2006;24:3838–43.

    Article  PubMed  Google Scholar 

  133. Grier HE, Krailo M, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. Cancer. 2003;348(8):694–701.

    CAS  Google Scholar 

  134. Womer RB, Daller RT, Fenton JG, Miser JS. Granulocyte colony stimulating factor permits dose intensification by interval compression in the treatment of Ewing's sarcomas and soft tissue sarcomas in children. Eur J Cancer. 2000;36(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  135. Granowetter L, Womer R, Devidas M, et al. Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: a Children’s Oncology Group Study. J Clin Oncol. 2009;27(15):2536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Womer RB, West DC, Krailo MD. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(33):4148–54.

    Google Scholar 

  137. Rasper MJS, Jabar S, Ranft A, Jürgens H, Amler S, Dirksen U. The value of high-dose chemotherapy in patients with first relapsed Ewing sarcoma. Pediatr Blood Cancer. 2014;61(8):1382–6.

    Article  CAS  PubMed  Google Scholar 

  138. Oberlin O, Rev A, Desfachelles AS. Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: a study by the Société Française des Cancers de l’Enfant. J Clin Oncol. 2006;24(24):3997–4002.

    Article  CAS  PubMed  Google Scholar 

  139. Laurence V, Pierga J, Barthier S, et al. Long-term follow up of high-dose chemotherapy with autologous stem cell rescue in adults with Ewing tumor. Am J Clin Oncol. 2005;28:301–9.

    Article  CAS  PubMed  Google Scholar 

  140. Burdach S, van Kaick B, Laws HJ, et al. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European intergroup study EICESS. Stem-cell transplant programs at Düsseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann Oncol. 2000;11(11):1451–62.

    Article  CAS  PubMed  Google Scholar 

  141. Dirksen U, LeDeley M-C, Brennan B, et al.Efficacy of busulfan-melphalan high dose chemotherapy consolidation (BuMel) compared to conventional chemotherapy combined with lung irradiation in Ewing’s Sarcoma (ES) with primary lung metastases: Results of EURO-EWING 99-R2 pulmonary randomized trial (EE9922R2pul). J Clin Oncol 34, 2016(Suppl; abstract 11001).

    Google Scholar 

  142. Saylors RL, Stine KC, Sullivan J, et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group Phase II Study. J Clin Oncol. 2001;19(15):3463–9.

    Article  CAS  PubMed  Google Scholar 

  143. Hunold A, Weddeling N, Paulussen M, et al. Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing’s tumors. Pediatr Blood Cancer. 2006;47(6):795–800.

    Article  PubMed  Google Scholar 

  144. Casey DA, Wexler LH, Merchant MS, et al. Irinotecan and temozolomide in patients with relapsed and refractory Ewing’s sarcoma. Pediatr Blood Cancer. 2009;53:1029–34.

    Article  PubMed  Google Scholar 

  145. Song SH, Youbi SE, Hong SP, et al. Pharmacokinetic modeling optimizes inhibition of the ‘undruggable’ EWS-FLI1 transcription factor in Ewing sarcoma. Oncotarget. 2014;5(2):338–50.

    Article  Google Scholar 

  146. Fidaleo M, De Paola E, Paronetto MP. The RNA helicase A in malignant transformation. Oncotarget. 2016;7(19):28711–23.

    PubMed  PubMed Central  Google Scholar 

  147. Strammiello R, Benini S, Manara MC, et al. Impact of IGF-I/IGF-IR circuit on the angiogenetic properties of Ewing’s sarcoma cells. Horm Metab Res. 2003;35(11–12):675–84.

    CAS  PubMed  Google Scholar 

  148. Pappo AS, Patel SR, Crowley J, et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II sarcoma alliance for research through collaboration study. J Clin Oncol. 2011;29(34):4541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tap WD, Demetri G, Barnette P, et al. Phase II study of Ganitumab, a fully human anti–type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol. 2012;15:1849–56.

    Article  CAS  Google Scholar 

  150. Schwartz GK, Tap WD, Qin LX. Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial. Lancet Oncol. 2013;14(4):371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ordóñez JL, Amaral AT, Carcaboso AM, et al. The PARP inhibitor olaparib enhances the sensitivity of Ewing sarcoma to trabectedin. Oncogene. 2015;6(22):18875–90.

    Google Scholar 

  152. Engert F, Schneider C, Weiβ LM, Probst M, Fulda S. PARP inhibitors sensitize Ewing sarcoma cells to temozolomide-induced apoptosis via the mitochondrial pathway. Mol Cancer Ther. 2015;14(12):2818–30.

    Article  CAS  PubMed  Google Scholar 

  153. Dantonello TM, Int-Veen C, Leuschner I, Schuck A. Mesenchymal chondrosarcoma of soft tissues and bone in children, adolescents, and young adults: experiences of the CWS and COSS Study Groups. Cancer. 2008;112:2424–31.

    Article  PubMed  Google Scholar 

  154. Cesari M, Bertoni F, Bacchini P, et al. Mesenchymal chondrosarcoma. An analysis of patients treated at a single institution. Tumori. 2007;93:423–7.

    PubMed  Google Scholar 

  155. Benjamin RS, Chu P, Patel SR, et al. Dedifferentiated chondrosarcoma: a treatable disease. Proc Am Assoc Cancer Res. 1995;36:243. [Abstract]

    Google Scholar 

  156. Yasko AW, Ravi V, Guadagnolo A. Chondrosarcoma. In: Lin PP, Patel S, editors. Bone sarcoma. New York: Springer; 2013.

    Google Scholar 

  157. Roudier MP, Kellar-Graney KL, Huang LY, et al. RANK and RANKL expression in giant cell tumors of the bone: an immunohistochemical study. In: 12th Annual Connective Tissue Oncology Society Meeting, Venice, Italy 2006.

    Google Scholar 

  158. Thomas D, Henshaw R, Skubitz K, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11(3):275–80.

    Article  CAS  PubMed  Google Scholar 

  159. Chawla S, Henshaw R, Seeger L, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013;14(9):901–8.

    Article  CAS  PubMed  Google Scholar 

  160. van der Heijden L, Dijkstra PD, van de Sande MA. The clinical approach toward giant cell tumor of bone. Oncologist. 2014;19:550–61.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Skubitz KM, Thomas DM, Chawla SP, et al. Response to treatment with denosumab in patients with giant cell tumor of bone (GCTB): FDG PET results from two phase 2 trials. J Clin Oncol. Asco Annual Meeting, 2014:abstract 10505.

    Google Scholar 

  162. Ludwig J, Trent JC. Targeted therapy of sarcoma. In: Kurzrock R, Markman M, editors. Targeted cancer therapy. Totowa, NJ: Humana Press; 2008. p. 317–29.

    Chapter  Google Scholar 

  163. D’Angelo S, Tap WD, Schwartz GK, Carvajal RD. Sarcoma immunotherapy: past approaches and future directions. Sarcoma. 2014;2014(391967):1–13.

    Article  CAS  Google Scholar 

  164. Lim J, Poulin NM, Nielsen TO. New strategies in sarcoma: linking genomic and immunotherapy approaches to molecular subtype. Clin Cancer Res. 2015;21(21):1–6.

    Article  CAS  Google Scholar 

  165. Mitsis D, Francescutti V, Skitzki J. Current immunotherapies for sarcoma: clinical trials and rationale. Sarcoma. 2016;2016:9757219.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lee A, Huang P, DeMatteo RP, Pollack SM. Immunotherapy for soft tissue sarcoma: tomorrow is only a day away. Am Soc Clin Oncol Educ Book. 2016;35:281–90.

    Article  PubMed  Google Scholar 

  167. Priebat DA. In: Markman M, editor. Atlas of cancer. Philadelphia: Current Medicine Group Lippincott, Williams, and Wilkins; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Priebat M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Priebat, D.A. (2017). Chemotherapy and Other Systemic Approaches to Adult Sarcomas. In: Henshaw, R. (eds) Sarcoma. Springer, Cham. https://doi.org/10.1007/978-3-319-43121-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43121-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43119-2

  • Online ISBN: 978-3-319-43121-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics