Skip to main content

Catalytic Upgrading of Bio-oil: Biomass Gasification in the Presence of Catalysts

  • Chapter
  • First Online:
Catalysis for Green Energy and Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 919 Accesses

Abstract

Because of general fact the population of the world is increasing and our ways of living, the consumption of energy was never been higher than it is today (Plouffe and Kalache in 87(5):733–739, 2010; Outlook in Energy information administration. Department of Energy, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjaye JD, Bakhshi N (1994) Upgrading of a wood-derived oil over various catalysts. Biomass Bioenerg 7(1):201–211

    Article  Google Scholar 

  • Adjaye JD, Bakhshi N (1995a) Catalytic conversion of a biomass-derived oil to fuels and chemicals I: model compound studies and reaction pathways. Biomass Bioenerg 8(3):131–149

    Article  Google Scholar 

  • Adjaye JD, Bakhshi N (1995b) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts. Fuel Process Technol 45(3):161–183

    Article  Google Scholar 

  • Adjaye JD, Sharma RK, Bakhshi NN (1992) Characterization and stability analysis of wood-derived bio-oil. Fuel Process Technol 31(3):241–256

    Article  Google Scholar 

  • Agrawal R, Singh NR (2009) Synergistic routes to liquid fuel for a petroleum-deprived future. AIChE J 55(7):1898–1905

    Article  Google Scholar 

  • Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 15(3):1615–1624

    Article  Google Scholar 

  • Badawi M, Cristol S, Paul J-F, Payen E (2009) DFT study of furan adsorption over stable molybdenum sulfide catalyst under HDO conditions. C R Chim 12(6):754–761

    Article  Google Scholar 

  • Badger PC, Fransham P (2006) Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—A preliminary assessment. Biomass Bioenerg 30(4):321–325

    Article  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875

    Article  Google Scholar 

  • Baldauf W, Balfanz U, Rupp M (1994) Upgrading of flash pyrolysis oil and utilization in refineries. Biomass Bioenerg 7(1–6):237–244

    Article  Google Scholar 

  • Barin I (1997) Thermochemical data of pure substances, thermochemical data of pure substances. Wiley-VCH, Germany

    Google Scholar 

  • Boucher M, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenerg 19(5):337–350

    Article  Google Scholar 

  • Bridgwater A (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29(1–4):285–295

    Article  Google Scholar 

  • Bridgwater T (2006) Biomass for energy. J Sci Food Agric 86(12):1755–1768

    Article  Google Scholar 

  • Bridgwater A, Czernik S, Piskorz J (2001) An overview of fast pyrolysis. In: Progress in thermochemical biomass conversion, pp 977–997

    Google Scholar 

  • Bulushev DA, Ross JR (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13

    Article  Google Scholar 

  • by Catalytic TF (2009) Pyrolysis oil upgrading to transportation fuels by catalytic hydrotreatment

    Google Scholar 

  • Centeno A, Laurent E, Delmon B (1995) Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. J Catal 154(2):288–298

    Article  Google Scholar 

  • Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183

    Article  Google Scholar 

  • Chiang H, Bhan A (2010) Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J Catal 271(2):251–261

    Article  Google Scholar 

  • Christensen JM, Mortensen PM, Trane R, Jensen PA, Jensen AD (2009) Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide. Appl Catal A 366(1):29–43

    Article  Google Scholar 

  • Christensen JM, Jensen PA, Schiødt NC, Jensen AD (2010) Coupling of Alcohols over alkali-promoted cobalt–molybdenum sulfide. ChemCatChem 2(5):523–526

    Article  Google Scholar 

  • Corma A, Huber GW, Sauvanaud L, O’connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247 (2):307–327

    Google Scholar 

  • Czernik S, French R, Feik C, Chornet E (2002) Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind Eng Chem Res 41(17):4209–4215

    Article  Google Scholar 

  • Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design—A review. Renew Sustain Energy Rev 15(1):366–378

    Article  Google Scholar 

  • Daudin A, Bournay L, Chapus T (2013) Method of converting effluents of renewable origin into fuel of excellent quality by using a molybdenum-based catalyst. Google Patents

    Google Scholar 

  • de Miguel MF, Groeneveld M, Kersten S, Way N, Schaverien C, Hogendoorn J (2010) Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units. Appl Catal B 96(1):57–66

    Google Scholar 

  • Dejaifve P, Védrine JC, Bolis V, Derouane EG (1980) Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite. J Catal 63(2):331–345

    Article  Google Scholar 

  • Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28

    Article  Google Scholar 

  • Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41(6):633–646

    Article  Google Scholar 

  • Demirbas MF, Balat M, Balat H (2011) Biowastes-to-biofuels. Energy Convers Manag 52(4):1815–1828

    Article  Google Scholar 

  • Echeandia S, Arias P, Barrio V, Pawelec B, Fierro J (2010) Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: Effect of tungsten precursors. Appl Catal B 101(1):1–12

    Article  Google Scholar 

  • Edelman MC, Maholland MK, Baldwin RM, Cowley SW (1988) Vapor-phase catalytic hydrodeoxygenation of benzofuran. J Catal 111(2):243–253

    Article  Google Scholar 

  • Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21(3):1792–1815

    Article  Google Scholar 

  • Elliott D, Baker E, Beckman D, Solantausta Y, Tolenhiemo V, Gevert S, Hörnell C, Östman A, Kjellström B (1990) Technoeconomic assessment of direct biomass liquefaction to transportation fuels. Biomass 22(1–4):251–269

    Article  Google Scholar 

  • Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Zacher AH (2009) Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ Prog Sustain Energy 28(3):441–449

    Article  Google Scholar 

  • Ferrari M, Bosmans S, Maggi R, Delmon B, Grange P (2001) CoMo/carbon hydrodeoxygenation catalysts: influence of the hydrogen sulfide partial pressure and of the sulfidation temperature. Catal Today 65(2):257–264

    Article  Google Scholar 

  • Fonseca A, Zeuthen P, Nagy JB (1996a) 13C nmr quantitative analysis of catalyst carbon deposits. Fuel 75(12):1363–1376

    Article  Google Scholar 

  • Fonseca A, Zeuthen P, Nagy JB (1996b) Assignment of an average chemical structure to catalyst carbon deposits on the basis of quantitative 13C nmr spectra. Fuel 75(12):1413–1423

    Article  Google Scholar 

  • French RJ, Stunkel J, Baldwin RM (2011) Mild hydrotreating of bio-oil: effect of reaction severity and fate of oxygenated species. Energy Fuels 25(7):3266–3274

    Article  Google Scholar 

  • Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A 199(2):147–190

    Article  Google Scholar 

  • Furimsky E, Massoth FE (1999) Deactivation of hydroprocessing catalysts. Catal Today 52(4):381–495

    Article  Google Scholar 

  • Gagnon J, Kaliaguine S (1988) Catalytic hydrotreatment of vacuum pyrolysis oils from wood. Ind Eng Chem Res 27(10):1783–1788

    Article  Google Scholar 

  • Gandarias I, Barrio V, Requies J, Arias P, Cambra J, Güemez M (2008) From biomass to fuels: Hydrotreating of oxygenated compounds. Int J Hydrogen Energy 33(13):3485–3488

    Article  Google Scholar 

  • Gervasini A, Auroux A (1991) Acidity and basicity of metal oxide surfaces II. Determination by catalytic decomposition of isopropanol. J Catal 131(1):190–198

    Article  Google Scholar 

  • Göransson K, Söderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs. Renew Sustain Energy Rev 15(1):482–492

    Article  Google Scholar 

  • Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517

    Article  Google Scholar 

  • Grange P, Laurent E, Maggi R, Centeno A, Delmon B (1996) Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study. Catal Today 29(1–4):297–301

    Article  Google Scholar 

  • Gutierrez A, Kaila R, Honkela M, Slioor R, Krause A (2009) Hydrodeoxygenation of guaiacol on noble metal catalysts. Catal Today 147(3):239–246

    Article  Google Scholar 

  • Huang J, Long W, Agrawal PK, Jones CW (2009) Effects of acidity on the conversion of the model bio-oil ketone cyclopentanone on H–Y zeolites. J Phys Chem C 113(38):16702–16710

    Article  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  Google Scholar 

  • Jones SB, Valkenburg C, Walton CW, Elliott DC, Holladay JE, Stevens DJ, Kinchin C, Czernik S (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case. Pacific Northwest National Laboratory, Richland, WA

    Google Scholar 

  • Keil FJ (1999) Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater 29(1):49–66

    Article  Google Scholar 

  • Kirschhock CE, Feijen EJ, Jacobs PA, Martens JA (2008) Hydrothermal zeolite synthesis. In: Handbook of heterogeneous catalysis

    Google Scholar 

  • Kwon KC, Mayfield H, Marolla T, Nichols B, Mashburn M (2011) Catalytic deoxygenation of liquid biomass for hydrocarbon fuels. Renew Energy 36(3):907–915

    Article  Google Scholar 

  • Laurent E, Delmon B (1994) Influence of water in the deactivation of a sulfided NiMoγ-Al2O3 catalyst during hydrodeoxygenation. J Catal 146(1):281288–285291

    Article  Google Scholar 

  • Li S, Dixon DA (2006) Molecular and electronic structures, Brönsted basicities, and Lewis acidities of group VIB transition metal oxide clusters. J Phys Chem A 110(19):6231–6244

    Article  Google Scholar 

  • Lin SD, Sanders DK, Vannice MA (1994) Influence of metal-support effects on acetophenone hydrogenation over platinum. Appl Catal A 113(1):59–73

    Article  Google Scholar 

  • Lin Y-C, Li C-L, Wan H-P, Lee H-T, Liu C-F (2011) Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy Fuels 25(3):890–896

    Article  Google Scholar 

  • Lu Q, Li W-Z, Zhu X-F (2009) Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag 50(5):1376–1383

    Article  Google Scholar 

  • Maggi R, Delmon B (1997) A review of catalytic hydrotreating processes for the upgrading of liquids produced by flash pyrolysis. Stud Surf Sci Catal 106:99–113

    Article  Google Scholar 

  • Mallat T, Baiker A (2000) Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl Catal A 200(1):3–22

    Article  Google Scholar 

  • Massoth F, Politzer P, Concha M, Murray J, Jakowski J, Simons J (2006) Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties. J Phys Chem B 110(29):14283–14291

    Article  Google Scholar 

  • McCall MJ, Brandvold TA, Elliott DC (2012) Fuel and fuel blending components from biomass derived pyrolysis oil. Google Patents

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83(1):37–46

    Article  Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SC, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458(7242):1158–1162

    Article  Google Scholar 

  • Mendes M, Santos O, Jordao E, Silva A (2001) Hydrogenation of oleic acid over ruthenium catalysts. Appl Catal A 217(1):253–262

    Article  Google Scholar 

  • Moberg DR, Thibodeau TJ, Amar FG, Frederick BG (2010) Mechanism of hydrodeoxygenation of acrolein on a cluster model of MoO3. J Phys Chem C 114(32):13782–13795

    Article  Google Scholar 

  • Moffatt J, Overend R (1985) Direct liquefaction of wood through solvolysis and catalytic hydrodeoxygenation: an engineering assessment. Biomass 7(2):99–123

    Article  Google Scholar 

  • Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen K, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407(1):1–19

    Article  Google Scholar 

  • Nava R, Pawelec B, Castaño P, Álvarez-Galván M, Loricera C, Fierro J (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B 92(1):154–167

    Article  Google Scholar 

  • Oasmaa A, Kuoppala E (2003) Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy Fuels 17(4):1075–1084

    Article  Google Scholar 

  • Oasmaa A, Elliott DC, Korhonen J (2010) Acidity of biomass fast pyrolysis bio-oils. Energy Fuels 24(12):6548–6554

    Article  Google Scholar 

  • Outlook AE (2010) Energy information administration. Department of Energy 2010 (9)

    Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. In: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC

    Google Scholar 

  • Park HJ, Heo HS, Jeon J-K, Kim J, Ryoo R, Jeong K-E, Park Y-K (2010) Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Appl Catal B 95(3):365–373

    Article  Google Scholar 

  • Perego C, Bosetti A (2011) Biomass to fuels: the role of zeolite and mesoporous materials. Microporous Mesoporous Mater 144(1):28–39

    Article  Google Scholar 

  • Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1(1):32–65

    Article  Google Scholar 

  • Plouffe L, Kalache A (2010) Towards global age-friendly cities: determining urban features that promote active aging. J Urban Health 87(5):733–739

    Article  Google Scholar 

  • Popov A, Kondratieva E, Goupil JM, Mariey L, Bazin P, Gilson J-P, Travert A, Maugé F (2010) Bio-oils hydrodeoxygenation: adsorption of phenolic molecules on oxidic catalyst supports. J Phys Chem C 114(37):15661–15670

    Article  Google Scholar 

  • Popov A, Kondratieva E, Gilson J-P, Mariey L, Travert A, Maugé F (2011) IR study of the interaction of phenol with oxides and sulfided CoMo catalysts for bio-fuel hydrodeoxygenation. Catal Today 172(1):132–135

    Article  Google Scholar 

  • Raffelt K, Henrich E, Koegel A, Stahl R, Steinhardt J, Weirich F (2006) The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Appl Biochem Biotechnol 129(1–3):153–164

    Article  Google Scholar 

  • Richardson S, Nagaishi H, Gray M (1995) Initial carbon deposition on a NiMo/Gamma-Al2O3 bitumen hydrocracking catalyst: the effect of reaction time and hydrogen pressure. Prepr Am Chem Soc Div Pet Chem 40(3):455–459

    Google Scholar 

  • Roedl A (2010) Production and energetic utilization of wood from short rotation coppice—a life cycle assessment. Int J Life Cycle Assess 15(6):567–578

    Article  Google Scholar 

  • Rogers J, Brammer JG (2009) Analysis of transport costs for energy crops for use in biomass pyrolysis plant networks. Biomass Bioenerg 33(10):1367–1375

    Article  Google Scholar 

  • Romero Y, Richard F, Brunet S (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism. Appl Catal B 98(3):213–223

    Article  Google Scholar 

  • Ryymin E-M, Honkela ML, Viljava T-R, Krause AOI (2010) Competitive reactions and mechanisms in the simultaneous HDO of phenol and methyl heptanoate over sulphided NiMo/γ-Al2O3. Appl Catal A 389(1):114–121

    Article  Google Scholar 

  • Samolada M, Baldauf W, Vasalos I (1998) Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel 77(14):1667–1675

    Article  Google Scholar 

  • Singh NR, Delgass WN, Ribeiro FH, Agrawal R (2010) Estimation of liquid fuel yields from biomass. Environ Sci Technol 44(13):5298–5305

    Article  Google Scholar 

  • Sorrell S, Speirs J, Bentley R, Brandt A, Miller R (2010) Global oil depletion: a review of the evidence. Energy Policy 38(9):5290–5295

    Article  Google Scholar 

  • Spath PL, Lane JM, Mann MK, Amos W (2000) Update of hydrogen from biomass-determination of the delivered cost of hydrogen. Milestone report for the US Department of Energy’s hydrogen program

    Google Scholar 

  • Stakheev AY, Kustov L (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl Catal A 188(1):3–35

    Article  Google Scholar 

  • Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29(1):3–48

    Article  MathSciNet  Google Scholar 

  • Stöcker M (2005) Gas phase catalysis by zeolites. Microporous Mesoporous Mater 82(3):257–292

    Article  MathSciNet  Google Scholar 

  • Tijmensen MJ, Faaij AP, Hamelinck CN, van Hardeveld MR (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenerg 23(2):129–152

    Article  Google Scholar 

  • Triantafillidis CS, Vlessidis AG, Nalbandian L, Evmiridis NP (2001) Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Microporous Mesoporous Mater 47(2):369–388

    Article  Google Scholar 

  • Vagia EC, Lemonidou AA (2007) Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. Int J Hydrogen Energy 32(2):212–223

    Article  Google Scholar 

  • Van Ruijven B, van Vuuren DP (2009) Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy 37(11):4797–4808

    Article  Google Scholar 

  • Vannice MA, Sen B (1989) Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum. J Catal 115(1):65–78

    Article  Google Scholar 

  • Vargas A, Bürgi T, Baiker A (2004) Adsorption of activated ketones on platinum and their reactivity to hydrogenation: a DFT study. J Catal 222(2):439–449

    Article  Google Scholar 

  • Vargas A, Reimann S, Diezi S, Mallat T, Baiker A (2008) Adsorption modes of aromatic ketones on platinum and their reactivity towards hydrogenation. J Mol Catal A Chem 282(1):1–8

    Article  Google Scholar 

  • Venderbosch R, Ardiyanti A, Wildschut J, Oasmaa A, Heeres H (2010) Stabilization of biomass-derived pyrolysis oils. J Chem Technol Biotechnol 85(5):674–686

    Article  Google Scholar 

  • Vitolo S, Bresci B, Seggiani M, Gallo M (2001) Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles. Fuel 80(1):17–26

    Article  Google Scholar 

  • Wang D, Czernik S, Montane D, Mann M, Chornet E (1997) Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind Eng Chem Res 36(5):1507–1518

    Article  Google Scholar 

  • Wang D, Czernik S, Chornet E (1998) Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy Fuels 12(1):19–24

    Article  Google Scholar 

  • Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131(1):175–188

    Article  Google Scholar 

  • Wenzel H (2010) Breaking the biomass bottleneck of the fossil free society. Concito

    Google Scholar 

  • Whiffen VM, Smith KJ (2010) Hydrodeoxygenation of 4-methylphenol over unsupported MoP, MoS2, and MoOx catalysts. Energy Fuels 24(9):4728–4737

    Article  Google Scholar 

  • Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48(23):10324–10334

    Article  Google Scholar 

  • Xu R, Pang W, Yu J, Huo Q, Chen J (2007) Structural chemistry of microporous materials, chemistry of zeolites and related porous materials. John Wiley & Sons (Asia) Pte Ltd., Singapore

    Google Scholar 

  • Yakovlev V, Khromova S, Sherstyuk O, Dundich V, Ermakov DY, Novopashina V, Lebedev MY, Bulavchenko O, Parmon V (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144(3):362–366

    Article  Google Scholar 

  • Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45(5):651–671

    Article  Google Scholar 

  • Yunquan Y, Gangsheng T, Smith KJ, Tye CT (2008) Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures. Chin J Chem Eng 16(5):733–739

    Google Scholar 

  • Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48(1):87–92

    Article  Google Scholar 

  • Zhang W, Zhang Y, Zhao L, Wei W (2010) Catalytic activities of NiMo carbide supported on SiO2 for the hydrodeoxygenation of ethyl benzoate, acetone, and acetaldehyde. Energy Fuels 24(3):2052–2059

    Article  Google Scholar 

  • Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem 121(22):4047–4050

    Article  Google Scholar 

  • Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2010) Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO2 catalysts. Chem Commun 46(3):412–414

    Article  Google Scholar 

  • Zhao C, He J, Lemonidou AA, Li X, Lercher JA (2011a) Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J Catal 280(1):8–16

    Article  Google Scholar 

  • Zhao H, Li D, Bui P, Oyama S (2011b) Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A 391(1):305–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Bagheri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bagheri, S. (2017). Catalytic Upgrading of Bio-oil: Biomass Gasification in the Presence of Catalysts. In: Catalysis for Green Energy and Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-43104-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43104-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43103-1

  • Online ISBN: 978-3-319-43104-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics