Advertisement

Catalytic Upgrading of Bio-oil: Biomass Gasification in the Presence of Catalysts

  • Samira Bagheri
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Because of general fact the population of the world is increasing and our ways of living, the consumption of energy was never been higher than it is today (Plouffe and Kalache in 87(5):733–739, 2010; Outlook in Energy information administration. Department of Energy, 2010).

References

  1. Adjaye JD, Bakhshi N (1994) Upgrading of a wood-derived oil over various catalysts. Biomass Bioenerg 7(1):201–211CrossRefGoogle Scholar
  2. Adjaye JD, Bakhshi N (1995a) Catalytic conversion of a biomass-derived oil to fuels and chemicals I: model compound studies and reaction pathways. Biomass Bioenerg 8(3):131–149CrossRefGoogle Scholar
  3. Adjaye JD, Bakhshi N (1995b) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts. Fuel Process Technol 45(3):161–183CrossRefGoogle Scholar
  4. Adjaye JD, Sharma RK, Bakhshi NN (1992) Characterization and stability analysis of wood-derived bio-oil. Fuel Process Technol 31(3):241–256CrossRefGoogle Scholar
  5. Agrawal R, Singh NR (2009) Synergistic routes to liquid fuel for a petroleum-deprived future. AIChE J 55(7):1898–1905CrossRefGoogle Scholar
  6. Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 15(3):1615–1624CrossRefGoogle Scholar
  7. Badawi M, Cristol S, Paul J-F, Payen E (2009) DFT study of furan adsorption over stable molybdenum sulfide catalyst under HDO conditions. C R Chim 12(6):754–761CrossRefGoogle Scholar
  8. Badger PC, Fransham P (2006) Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—A preliminary assessment. Biomass Bioenerg 30(4):321–325CrossRefGoogle Scholar
  9. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875CrossRefGoogle Scholar
  10. Baldauf W, Balfanz U, Rupp M (1994) Upgrading of flash pyrolysis oil and utilization in refineries. Biomass Bioenerg 7(1–6):237–244CrossRefGoogle Scholar
  11. Barin I (1997) Thermochemical data of pure substances, thermochemical data of pure substances. Wiley-VCH, GermanyGoogle Scholar
  12. Boucher M, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenerg 19(5):337–350CrossRefGoogle Scholar
  13. Bridgwater A (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29(1–4):285–295CrossRefGoogle Scholar
  14. Bridgwater T (2006) Biomass for energy. J Sci Food Agric 86(12):1755–1768CrossRefGoogle Scholar
  15. Bridgwater A, Czernik S, Piskorz J (2001) An overview of fast pyrolysis. In: Progress in thermochemical biomass conversion, pp 977–997Google Scholar
  16. Bulushev DA, Ross JR (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13CrossRefGoogle Scholar
  17. by Catalytic TF (2009) Pyrolysis oil upgrading to transportation fuels by catalytic hydrotreatmentGoogle Scholar
  18. Centeno A, Laurent E, Delmon B (1995) Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. J Catal 154(2):288–298CrossRefGoogle Scholar
  19. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183CrossRefGoogle Scholar
  20. Chiang H, Bhan A (2010) Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J Catal 271(2):251–261CrossRefGoogle Scholar
  21. Christensen JM, Mortensen PM, Trane R, Jensen PA, Jensen AD (2009) Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide. Appl Catal A 366(1):29–43CrossRefGoogle Scholar
  22. Christensen JM, Jensen PA, Schiødt NC, Jensen AD (2010) Coupling of Alcohols over alkali-promoted cobalt–molybdenum sulfide. ChemCatChem 2(5):523–526CrossRefGoogle Scholar
  23. Corma A, Huber GW, Sauvanaud L, O’connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247 (2):307–327Google Scholar
  24. Czernik S, French R, Feik C, Chornet E (2002) Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind Eng Chem Res 41(17):4209–4215CrossRefGoogle Scholar
  25. Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design—A review. Renew Sustain Energy Rev 15(1):366–378CrossRefGoogle Scholar
  26. Daudin A, Bournay L, Chapus T (2013) Method of converting effluents of renewable origin into fuel of excellent quality by using a molybdenum-based catalyst. Google PatentsGoogle Scholar
  27. de Miguel MF, Groeneveld M, Kersten S, Way N, Schaverien C, Hogendoorn J (2010) Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units. Appl Catal B 96(1):57–66Google Scholar
  28. Dejaifve P, Védrine JC, Bolis V, Derouane EG (1980) Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite. J Catal 63(2):331–345CrossRefGoogle Scholar
  29. Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28CrossRefGoogle Scholar
  30. Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41(6):633–646CrossRefGoogle Scholar
  31. Demirbas MF, Balat M, Balat H (2011) Biowastes-to-biofuels. Energy Convers Manag 52(4):1815–1828CrossRefGoogle Scholar
  32. Echeandia S, Arias P, Barrio V, Pawelec B, Fierro J (2010) Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: Effect of tungsten precursors. Appl Catal B 101(1):1–12CrossRefGoogle Scholar
  33. Edelman MC, Maholland MK, Baldwin RM, Cowley SW (1988) Vapor-phase catalytic hydrodeoxygenation of benzofuran. J Catal 111(2):243–253CrossRefGoogle Scholar
  34. Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21(3):1792–1815CrossRefGoogle Scholar
  35. Elliott D, Baker E, Beckman D, Solantausta Y, Tolenhiemo V, Gevert S, Hörnell C, Östman A, Kjellström B (1990) Technoeconomic assessment of direct biomass liquefaction to transportation fuels. Biomass 22(1–4):251–269CrossRefGoogle Scholar
  36. Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Zacher AH (2009) Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ Prog Sustain Energy 28(3):441–449CrossRefGoogle Scholar
  37. Ferrari M, Bosmans S, Maggi R, Delmon B, Grange P (2001) CoMo/carbon hydrodeoxygenation catalysts: influence of the hydrogen sulfide partial pressure and of the sulfidation temperature. Catal Today 65(2):257–264CrossRefGoogle Scholar
  38. Fonseca A, Zeuthen P, Nagy JB (1996a) 13C nmr quantitative analysis of catalyst carbon deposits. Fuel 75(12):1363–1376CrossRefGoogle Scholar
  39. Fonseca A, Zeuthen P, Nagy JB (1996b) Assignment of an average chemical structure to catalyst carbon deposits on the basis of quantitative 13C nmr spectra. Fuel 75(12):1413–1423CrossRefGoogle Scholar
  40. French RJ, Stunkel J, Baldwin RM (2011) Mild hydrotreating of bio-oil: effect of reaction severity and fate of oxygenated species. Energy Fuels 25(7):3266–3274CrossRefGoogle Scholar
  41. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A 199(2):147–190CrossRefGoogle Scholar
  42. Furimsky E, Massoth FE (1999) Deactivation of hydroprocessing catalysts. Catal Today 52(4):381–495CrossRefGoogle Scholar
  43. Gagnon J, Kaliaguine S (1988) Catalytic hydrotreatment of vacuum pyrolysis oils from wood. Ind Eng Chem Res 27(10):1783–1788CrossRefGoogle Scholar
  44. Gandarias I, Barrio V, Requies J, Arias P, Cambra J, Güemez M (2008) From biomass to fuels: Hydrotreating of oxygenated compounds. Int J Hydrogen Energy 33(13):3485–3488CrossRefGoogle Scholar
  45. Gervasini A, Auroux A (1991) Acidity and basicity of metal oxide surfaces II. Determination by catalytic decomposition of isopropanol. J Catal 131(1):190–198CrossRefGoogle Scholar
  46. Göransson K, Söderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs. Renew Sustain Energy Rev 15(1):482–492CrossRefGoogle Scholar
  47. Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517CrossRefGoogle Scholar
  48. Grange P, Laurent E, Maggi R, Centeno A, Delmon B (1996) Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study. Catal Today 29(1–4):297–301CrossRefGoogle Scholar
  49. Gutierrez A, Kaila R, Honkela M, Slioor R, Krause A (2009) Hydrodeoxygenation of guaiacol on noble metal catalysts. Catal Today 147(3):239–246CrossRefGoogle Scholar
  50. Huang J, Long W, Agrawal PK, Jones CW (2009) Effects of acidity on the conversion of the model bio-oil ketone cyclopentanone on H–Y zeolites. J Phys Chem C 113(38):16702–16710CrossRefGoogle Scholar
  51. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098CrossRefGoogle Scholar
  52. Jones SB, Valkenburg C, Walton CW, Elliott DC, Holladay JE, Stevens DJ, Kinchin C, Czernik S (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case. Pacific Northwest National Laboratory, Richland, WAGoogle Scholar
  53. Keil FJ (1999) Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater 29(1):49–66CrossRefGoogle Scholar
  54. Kirschhock CE, Feijen EJ, Jacobs PA, Martens JA (2008) Hydrothermal zeolite synthesis. In: Handbook of heterogeneous catalysisGoogle Scholar
  55. Kwon KC, Mayfield H, Marolla T, Nichols B, Mashburn M (2011) Catalytic deoxygenation of liquid biomass for hydrocarbon fuels. Renew Energy 36(3):907–915CrossRefGoogle Scholar
  56. Laurent E, Delmon B (1994) Influence of water in the deactivation of a sulfided NiMoγ-Al2O3 catalyst during hydrodeoxygenation. J Catal 146(1):281288–285291CrossRefGoogle Scholar
  57. Li S, Dixon DA (2006) Molecular and electronic structures, Brönsted basicities, and Lewis acidities of group VIB transition metal oxide clusters. J Phys Chem A 110(19):6231–6244CrossRefGoogle Scholar
  58. Lin SD, Sanders DK, Vannice MA (1994) Influence of metal-support effects on acetophenone hydrogenation over platinum. Appl Catal A 113(1):59–73CrossRefGoogle Scholar
  59. Lin Y-C, Li C-L, Wan H-P, Lee H-T, Liu C-F (2011) Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy Fuels 25(3):890–896CrossRefGoogle Scholar
  60. Lu Q, Li W-Z, Zhu X-F (2009) Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag 50(5):1376–1383CrossRefGoogle Scholar
  61. Maggi R, Delmon B (1997) A review of catalytic hydrotreating processes for the upgrading of liquids produced by flash pyrolysis. Stud Surf Sci Catal 106:99–113CrossRefGoogle Scholar
  62. Mallat T, Baiker A (2000) Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl Catal A 200(1):3–22CrossRefGoogle Scholar
  63. Massoth F, Politzer P, Concha M, Murray J, Jakowski J, Simons J (2006) Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties. J Phys Chem B 110(29):14283–14291CrossRefGoogle Scholar
  64. McCall MJ, Brandvold TA, Elliott DC (2012) Fuel and fuel blending components from biomass derived pyrolysis oil. Google PatentsGoogle Scholar
  65. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83(1):37–46CrossRefGoogle Scholar
  66. Meinshausen M, Meinshausen N, Hare W, Raper SC, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458(7242):1158–1162CrossRefGoogle Scholar
  67. Mendes M, Santos O, Jordao E, Silva A (2001) Hydrogenation of oleic acid over ruthenium catalysts. Appl Catal A 217(1):253–262CrossRefGoogle Scholar
  68. Moberg DR, Thibodeau TJ, Amar FG, Frederick BG (2010) Mechanism of hydrodeoxygenation of acrolein on a cluster model of MoO3. J Phys Chem C 114(32):13782–13795CrossRefGoogle Scholar
  69. Moffatt J, Overend R (1985) Direct liquefaction of wood through solvolysis and catalytic hydrodeoxygenation: an engineering assessment. Biomass 7(2):99–123CrossRefGoogle Scholar
  70. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen K, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407(1):1–19CrossRefGoogle Scholar
  71. Nava R, Pawelec B, Castaño P, Álvarez-Galván M, Loricera C, Fierro J (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B 92(1):154–167CrossRefGoogle Scholar
  72. Oasmaa A, Kuoppala E (2003) Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy Fuels 17(4):1075–1084CrossRefGoogle Scholar
  73. Oasmaa A, Elliott DC, Korhonen J (2010) Acidity of biomass fast pyrolysis bio-oils. Energy Fuels 24(12):6548–6554CrossRefGoogle Scholar
  74. Outlook AE (2010) Energy information administration. Department of Energy 2010 (9)Google Scholar
  75. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. In: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCCGoogle Scholar
  76. Park HJ, Heo HS, Jeon J-K, Kim J, Ryoo R, Jeong K-E, Park Y-K (2010) Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Appl Catal B 95(3):365–373CrossRefGoogle Scholar
  77. Perego C, Bosetti A (2011) Biomass to fuels: the role of zeolite and mesoporous materials. Microporous Mesoporous Mater 144(1):28–39CrossRefGoogle Scholar
  78. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1(1):32–65CrossRefGoogle Scholar
  79. Plouffe L, Kalache A (2010) Towards global age-friendly cities: determining urban features that promote active aging. J Urban Health 87(5):733–739CrossRefGoogle Scholar
  80. Popov A, Kondratieva E, Goupil JM, Mariey L, Bazin P, Gilson J-P, Travert A, Maugé F (2010) Bio-oils hydrodeoxygenation: adsorption of phenolic molecules on oxidic catalyst supports. J Phys Chem C 114(37):15661–15670CrossRefGoogle Scholar
  81. Popov A, Kondratieva E, Gilson J-P, Mariey L, Travert A, Maugé F (2011) IR study of the interaction of phenol with oxides and sulfided CoMo catalysts for bio-fuel hydrodeoxygenation. Catal Today 172(1):132–135CrossRefGoogle Scholar
  82. Raffelt K, Henrich E, Koegel A, Stahl R, Steinhardt J, Weirich F (2006) The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Appl Biochem Biotechnol 129(1–3):153–164CrossRefGoogle Scholar
  83. Richardson S, Nagaishi H, Gray M (1995) Initial carbon deposition on a NiMo/Gamma-Al2O3 bitumen hydrocracking catalyst: the effect of reaction time and hydrogen pressure. Prepr Am Chem Soc Div Pet Chem 40(3):455–459Google Scholar
  84. Roedl A (2010) Production and energetic utilization of wood from short rotation coppice—a life cycle assessment. Int J Life Cycle Assess 15(6):567–578CrossRefGoogle Scholar
  85. Rogers J, Brammer JG (2009) Analysis of transport costs for energy crops for use in biomass pyrolysis plant networks. Biomass Bioenerg 33(10):1367–1375CrossRefGoogle Scholar
  86. Romero Y, Richard F, Brunet S (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism. Appl Catal B 98(3):213–223CrossRefGoogle Scholar
  87. Ryymin E-M, Honkela ML, Viljava T-R, Krause AOI (2010) Competitive reactions and mechanisms in the simultaneous HDO of phenol and methyl heptanoate over sulphided NiMo/γ-Al2O3. Appl Catal A 389(1):114–121CrossRefGoogle Scholar
  88. Samolada M, Baldauf W, Vasalos I (1998) Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel 77(14):1667–1675CrossRefGoogle Scholar
  89. Singh NR, Delgass WN, Ribeiro FH, Agrawal R (2010) Estimation of liquid fuel yields from biomass. Environ Sci Technol 44(13):5298–5305CrossRefGoogle Scholar
  90. Sorrell S, Speirs J, Bentley R, Brandt A, Miller R (2010) Global oil depletion: a review of the evidence. Energy Policy 38(9):5290–5295CrossRefGoogle Scholar
  91. Spath PL, Lane JM, Mann MK, Amos W (2000) Update of hydrogen from biomass-determination of the delivered cost of hydrogen. Milestone report for the US Department of Energy’s hydrogen programGoogle Scholar
  92. Stakheev AY, Kustov L (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl Catal A 188(1):3–35CrossRefGoogle Scholar
  93. Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29(1):3–48MathSciNetCrossRefGoogle Scholar
  94. Stöcker M (2005) Gas phase catalysis by zeolites. Microporous Mesoporous Mater 82(3):257–292MathSciNetCrossRefGoogle Scholar
  95. Tijmensen MJ, Faaij AP, Hamelinck CN, van Hardeveld MR (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenerg 23(2):129–152CrossRefGoogle Scholar
  96. Triantafillidis CS, Vlessidis AG, Nalbandian L, Evmiridis NP (2001) Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Microporous Mesoporous Mater 47(2):369–388CrossRefGoogle Scholar
  97. Vagia EC, Lemonidou AA (2007) Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. Int J Hydrogen Energy 32(2):212–223CrossRefGoogle Scholar
  98. Van Ruijven B, van Vuuren DP (2009) Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy 37(11):4797–4808CrossRefGoogle Scholar
  99. Vannice MA, Sen B (1989) Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum. J Catal 115(1):65–78CrossRefGoogle Scholar
  100. Vargas A, Bürgi T, Baiker A (2004) Adsorption of activated ketones on platinum and their reactivity to hydrogenation: a DFT study. J Catal 222(2):439–449CrossRefGoogle Scholar
  101. Vargas A, Reimann S, Diezi S, Mallat T, Baiker A (2008) Adsorption modes of aromatic ketones on platinum and their reactivity towards hydrogenation. J Mol Catal A Chem 282(1):1–8CrossRefGoogle Scholar
  102. Venderbosch R, Ardiyanti A, Wildschut J, Oasmaa A, Heeres H (2010) Stabilization of biomass-derived pyrolysis oils. J Chem Technol Biotechnol 85(5):674–686CrossRefGoogle Scholar
  103. Vitolo S, Bresci B, Seggiani M, Gallo M (2001) Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles. Fuel 80(1):17–26CrossRefGoogle Scholar
  104. Wang D, Czernik S, Montane D, Mann M, Chornet E (1997) Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind Eng Chem Res 36(5):1507–1518CrossRefGoogle Scholar
  105. Wang D, Czernik S, Chornet E (1998) Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy Fuels 12(1):19–24CrossRefGoogle Scholar
  106. Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131(1):175–188CrossRefGoogle Scholar
  107. Wenzel H (2010) Breaking the biomass bottleneck of the fossil free society. ConcitoGoogle Scholar
  108. Whiffen VM, Smith KJ (2010) Hydrodeoxygenation of 4-methylphenol over unsupported MoP, MoS2, and MoOx catalysts. Energy Fuels 24(9):4728–4737CrossRefGoogle Scholar
  109. Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48(23):10324–10334CrossRefGoogle Scholar
  110. Xu R, Pang W, Yu J, Huo Q, Chen J (2007) Structural chemistry of microporous materials, chemistry of zeolites and related porous materials. John Wiley & Sons (Asia) Pte Ltd., SingaporeGoogle Scholar
  111. Yakovlev V, Khromova S, Sherstyuk O, Dundich V, Ermakov DY, Novopashina V, Lebedev MY, Bulavchenko O, Parmon V (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144(3):362–366CrossRefGoogle Scholar
  112. Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45(5):651–671CrossRefGoogle Scholar
  113. Yunquan Y, Gangsheng T, Smith KJ, Tye CT (2008) Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures. Chin J Chem Eng 16(5):733–739Google Scholar
  114. Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48(1):87–92CrossRefGoogle Scholar
  115. Zhang W, Zhang Y, Zhao L, Wei W (2010) Catalytic activities of NiMo carbide supported on SiO2 for the hydrodeoxygenation of ethyl benzoate, acetone, and acetaldehyde. Energy Fuels 24(3):2052–2059CrossRefGoogle Scholar
  116. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem 121(22):4047–4050CrossRefGoogle Scholar
  117. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2010) Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO2 catalysts. Chem Commun 46(3):412–414CrossRefGoogle Scholar
  118. Zhao C, He J, Lemonidou AA, Li X, Lercher JA (2011a) Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J Catal 280(1):8–16CrossRefGoogle Scholar
  119. Zhao H, Li D, Bui P, Oyama S (2011b) Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A 391(1):305–310CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NANOCATUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations