Advertisement

Catalytic Upgrading of Glycerol, Conversion of Biomass Derived Carbohydrates to Fuels and Catalysis in Depolymerization of Lignin

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Over the past decades, petroleum resources have been used dominantly in production of petrochemicals and also fuels for transportation results in the depletion of petroleum resources.

References

  1. Adhikari S, Fernando S, Gwaltney SR, To SF, Bricka RM, Steele PH, Haryanto A (2007) A thermodynamic analysis of hydrogen production by steam reforming of glycerol. Int J Hydrogen Energy 32(14):2875–2880CrossRefGoogle Scholar
  2. Adhikari S, Fernando SD, To SF, Bricka RM, Steele PH, Haryanto A (2008) Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energy Fuels 22(2):1220–1226CrossRefGoogle Scholar
  3. Adhikari S, Fernando SD, Haryanto A (2009) Hydrogen production from glycerol: an update. Energy Convers Manag 50(10):2600–2604CrossRefGoogle Scholar
  4. Ahmad T, Kenne L, Olsson K, Theander O (1995) The formation of 2-furaldehyde and formic acid from pentoses in slightly acidic deuterium oxide studied by 1H NMR spectroscopy. Carbohyd Res 276(2):309–320CrossRefGoogle Scholar
  5. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRefGoogle Scholar
  6. Ammam M (2013) Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing. J Mater Chem A 1(21):6291–6312CrossRefGoogle Scholar
  7. Anbarasan P, Baer ZC, Sreekumar S, Gross E, Binder JB, Blanch HW, Clark DS, Toste FD (2012) Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491(7423):235–239CrossRefGoogle Scholar
  8. Arroyo-López FN, Pérez-Torrado R, Querol A, Barrio E (2010) Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiol 27(5):628–637CrossRefGoogle Scholar
  9. Atadashi I, Aroua M, Aziz AA, Sulaiman N (2012) The effects of water on biodiesel production and refining technologies: a review. Renew Sustain Energy Rev 16(5):3456–3470CrossRefGoogle Scholar
  10. Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energy Rev 16(5):2671–2686CrossRefGoogle Scholar
  11. Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18(7):1839–1854CrossRefGoogle Scholar
  12. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci 107(10):4516–4521CrossRefGoogle Scholar
  13. Binder JB, Blank JJ, Cefali AV, Raines RT (2010) Synthesis of furfural from xylose and xylan. Chemsuschem 3(11):1268–1272CrossRefGoogle Scholar
  14. Bobadilla L, Blay V, Álvarez A, Domínguez M, Romero-Sarria F, Centeno M, Odriozola J (2016) Intensifying glycerol steam reforming on a monolith catalyst: a reaction kinetic model. Chem Eng J 306:933–941CrossRefGoogle Scholar
  15. Bournay L, Casanave D, Delfort B, Hillion G, Chodorge J (2005) New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal Today 106(1):190–192CrossRefGoogle Scholar
  16. Bowker M, Davies PR, Al-Mazroai LS (2009) Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catal Lett 128(3–4):253CrossRefGoogle Scholar
  17. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554CrossRefGoogle Scholar
  18. Brandner A, Lehnert K, Bienholz A, Lucas M, Claus P (2009) Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol. Top Catal 52(3):278–287CrossRefGoogle Scholar
  19. Byrd AJ, Pant K, Gupta RB (2008) Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel 87(13):2956–2960CrossRefGoogle Scholar
  20. Cao Q, Guo X, Guan J, Mu X, Zhang D (2011) A process for efficient conversion of fructose into 5-hydroxymethylfurfural in ammonium salts. Appl Catal A 403(1):98–103CrossRefGoogle Scholar
  21. Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241CrossRefGoogle Scholar
  22. Carmona M, Valverde JL, Pérez A, Warchol J, Rodriguez JF (2009) Purification of glycerol/water solutions from biodiesel synthesis by ion exchange: sodium removal Part I. J Chem Technol Biotechnol 84(5):738–744CrossRefGoogle Scholar
  23. Chakinala AG, Brilman DW, van Swaaij WP, Kersten SR (2009) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49(3):1113–1122CrossRefGoogle Scholar
  24. Charlier J-C, Michenaud J-P, Gonze X, Vigneron J-P (1991) Tight-binding model for the electronic properties of simple hexagonal graphite. Phys Rev B 44(24):13237CrossRefGoogle Scholar
  25. Chen W-H, Syu Y-J (2010) Hydrogen production from water gas shift reaction in a high gravity (Higee) environment using a rotating packed bed. Int J Hydrogen Energy 35(19):10179–10189CrossRefGoogle Scholar
  26. Cheng CK, Foo SY, Adesina AA (2010a) H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming. Catal Commun 12(4):292–298CrossRefGoogle Scholar
  27. Cheng S, Yang L, Gong F (2010b) Novel branched poly (l-lactide) with poly (glycerol-co-sebacate) core. Polym Bull 65(7):643–655CrossRefGoogle Scholar
  28. Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen. Appl Catal A 381(1):1–7CrossRefGoogle Scholar
  29. Choudhary V, Pinar AB, Sandler SI, Vlachos DG, Lobo RF (2011) Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. Acs Catalysis 1(12):1724–1728CrossRefGoogle Scholar
  30. Connors W, Johanson L, Sarkanen K, Winslow P (1980) Thermal degradation of kraft lignin in tetralin. Holzforschung-Int J Biol Chem Phy Technol Wood 34(1):29–37Google Scholar
  31. Creasey JJ, Parlett CM, Manayil JC, Isaacs MA, Wilson K, Lee AF (2015) Facile route to conformal hydrotalcite coatings over complex architectures: a hierarchically ordered nanoporous base catalyst for FAME production. Green Chem 17(4):2398–2405CrossRefGoogle Scholar
  32. Cui Y, Galvita V, Rihko-Struckmann L, Lorenz H, Sundmacher K (2009) Steam reforming of glycerol: the experimental activity of La1–xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium. Appl Catal B 90(1):29–37CrossRefGoogle Scholar
  33. Cydzik-Kwiatkowska A, Wojnowska-Baryła I, Selewska K (2010) Granulation of sludge under different loads of a glycerol fraction from biodiesel production. Eur J Lipid Sci Technol 112(5):609–613Google Scholar
  34. Dabral S, Mottweiler J, Rinesch T, Bolm C (2015) Base-catalysed cleavage of lignin β-O-4 model compounds in dimethyl carbonate. Green Chem 17(11):4908–4912CrossRefGoogle Scholar
  35. Daskalaki VM, Kondarides DI (2009) Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catal Today 144(1):75–80CrossRefGoogle Scholar
  36. Dave CD, Pant K (2011) Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst. Renew Energy 36(11):3195–3202CrossRefGoogle Scholar
  37. Devi P, Bethala L, Gangadhar KN, Sai Prasad PS, Jagannadh B, Prasad RB (2009) A Glycerol-based carbon catalyst for the preparation of biodiesel. Chemsuschem 2(7):617–620CrossRefGoogle Scholar
  38. Dhepe PL, Sahu R (2010) A solid-acid-based process for the conversion of hemicellulose. Green Chem 12(12):2153–2156CrossRefGoogle Scholar
  39. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39(2):217–226CrossRefGoogle Scholar
  40. Dou B, Dupont V, Williams PT, Chen H, Ding Y (2009) Thermogravimetric kinetics of crude glycerol. Biores Technol 100(9):2613–2620CrossRefGoogle Scholar
  41. Erdocia X, Prado R, Corcuera MA, Labidi J (2014) Base catalyzed depolymerization of lignin: influence of organosolv lignin nature. Biomass Bioenergy 66:379–386Google Scholar
  42. Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catal Rev 51(3):293–324CrossRefGoogle Scholar
  43. Feather MS (1970) The conversion of D-xylose and D-glucuronic acid to 2-furaldehyde. Tetrahedron Lett 11(48):4143–4145CrossRefGoogle Scholar
  44. Fernández Y, Arenillas A, Díez MA, Pis J, Menéndez J (2009) Pyrolysis of glycerol over activated carbons for syngas production. J Anal Appl Pyrol 84(2):145–150CrossRefGoogle Scholar
  45. Fernández Y, Arenillas A, Bermúdez JM, Menéndez J (2010) Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. J Anal Appl Pyrol 88(2):155–159CrossRefGoogle Scholar
  46. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558CrossRefGoogle Scholar
  47. Gallo A, Pirovano C, Marelli M, Psaro R, Dal Santo V (2010) Hydrogen production by glycerol steam reforming with Ru-based catalysts: a study on Sn doping. Chem Vap Deposition 16(10–12):305–310CrossRefGoogle Scholar
  48. Ganesh I, Ravikumar S, Hong SH (2012) Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol Bioprocess Eng 17(4):671–678CrossRefGoogle Scholar
  49. Gaspar AR, Gamelas JA, Evtuguin DV, Neto CP (2007) Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review. Green Chem 9(7):717–730CrossRefGoogle Scholar
  50. Geboers JA, Van de Vyver S, Ooms R, de Beeck BO, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726CrossRefGoogle Scholar
  51. Gupta NK, Nishimura S, Takagaki A, Ebitani K (2011) Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem 13(4):824–827CrossRefGoogle Scholar
  52. Hadi M, Shariati M, Afsharzadeh S (2008) Microalgal biotechnology: carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh. Iran Biotechnol Bioprocess Eng 13(5):540–544CrossRefGoogle Scholar
  53. Hájek M, Skopal F (2010) Treatment of glycerol phase formed by biodiesel production. Biores Technol 101(9):3242–3245CrossRefGoogle Scholar
  54. Hansen TS, Mielby J, Riisager A (2011) Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chem 13(1):109–114CrossRefGoogle Scholar
  55. He F, Li P, Gu Y, Li G (2009) Glycerol as a promoting medium for electrophilic activation of aldehydes: catalyst-free synthesis of di(indolyl) methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes. Green Chem 11(11):1767–1773CrossRefGoogle Scholar
  56. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260CrossRefGoogle Scholar
  57. Hu S, Zhang Z, Song J, Zhou Y, Han B (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem 11(11):1746–1749CrossRefGoogle Scholar
  58. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(5727):1446–1450CrossRefGoogle Scholar
  59. Iliuta I, Iliuta MC, Fongarland P, Larachi F (2012) Integrated aqueous-phase glycerol reforming to dimethyl ether synthesis—a novel allothermal dual bed membrane reactor concept. Chem Eng J 187:311–327CrossRefGoogle Scholar
  60. Ilyushin V, Motiyenko R, Lovas F, Plusquellic D (2008) Microwave spectrum of glycerol: observation of a tunneling chiral isomer. J Mol Spectrosc 251(1):129–137CrossRefGoogle Scholar
  61. Iriondo A, Barrio V, Cambra J, Arias P, Güemez M, Navarro R, Sánchez-Sánchez M, Fierro J (2008) Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top Catal 49(1–2):46–58CrossRefGoogle Scholar
  62. Iriondo A, Barrio V, Cambra J, Arias P, Guemez M, Sanchez-Sanchez M, Navarro R, Fierro J (2010) Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. Int J Hydrogen Energy 35(20):11622–11633CrossRefGoogle Scholar
  63. Ismail TNMT, Hassan HA, Hirose S, Taguchi Y, Hatakeyama T, Hatakeyama H (2010) Synthesis and thermal properties of ester-type crosslinked epoxy resins derived from lignosulfonate and glycerol. Polym Int 59(2):181–186Google Scholar
  64. Israel A, Obot I, Asuquo J (2008) Recovery of glycerol from spent soap LyeBy-product of soap manufacture. J Chem 5(4):940–945Google Scholar
  65. Iulianelli A, Seelam P, Liguori S, Longo T, Keiski R, Calabro V, Basile A (2011) Hydrogen production for PEM fuel cell by gas phase reforming of glycerol as byproduct of bio-diesel. The use of a Pd–Ag membrane reactor at middle reaction temperature. Int J Hydrogen Energy 36(6):3827–3834CrossRefGoogle Scholar
  66. James OO, Maity S, Usman LA, Ajanaku KO, Ajani OO, Siyanbola TO, Sahu S, Chaubey R (2010a) Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy Environ Sci 3(12):1833–1850CrossRefGoogle Scholar
  67. James OO, Mesubi AM, Ako TC, Maity S (2010b) Increasing carbon utilization in Fischer-Tropsch synthesis using H2-deficient or CO2-rich syngas feeds. Fuel Process Technol 91(2):136–144CrossRefGoogle Scholar
  68. Jerzykiewicz M, Cwielag I, Jerzykiewicz W (2009) The antioxidant and anticorrosive properties of crude glycerol fraction from biodiesel production. J Chem Technol Biotechnol 84(8):1196–1201CrossRefGoogle Scholar
  69. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348CrossRefGoogle Scholar
  70. Johnstone RA, Wilby AH, Entwistle ID (1985) Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem Rev 85(2):129–170CrossRefGoogle Scholar
  71. Kaçka A, Dönmez G (2008) Isolation of Dunaliella spp. from a hypersaline lake and their ability to accumulate glycerol. Biores Technol 99(17):8348–8352CrossRefGoogle Scholar
  72. Kale GR, Kulkarni BD (2010) Thermodynamic analysis of dry autothermal reforming of glycerol. Fuel Process Technol 91(5):520–530CrossRefGoogle Scholar
  73. Kamwilaisak K, Wright PC (2012) Investigating laccase and titanium dioxide for lignin degradation. Energy Fuels 26(4):2400–2406CrossRefGoogle Scholar
  74. Karinen R, Vilonen K, Niemelä M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. Chemsuschem 4(8):1002–1016CrossRefGoogle Scholar
  75. Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 32(3):235–262CrossRefGoogle Scholar
  76. Kim MG, Boyd G, Strickland R (1994) Adhesive properties of furfural-modified phenol-formaldehyde resins as oriented strandboard bindersGoogle Scholar
  77. Kim KH, Brown RC, Kieffer M, Bai X (2014) Hydrogen-donor-assisted solvent liquefaction of lignin to short-chain alkylphenols using a micro reactor/gas chromatography system. Energy Fuels 28(10):6429–6437CrossRefGoogle Scholar
  78. Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31(5):736–745CrossRefGoogle Scholar
  79. Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2(5):869–883CrossRefGoogle Scholar
  80. Kongjao S, Damronglerd S, Hunsom M (2010) Purification of crude glycerol derived from waste used-oil methyl ester plant. Korean J Chem Eng 27(3):944–949CrossRefGoogle Scholar
  81. Kongjao S, Damronglerd S, Hunsom M (2011) Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. J Appl Electrochem 41(2):215–222CrossRefGoogle Scholar
  82. Korpi H, Sippola V, Filpponen I, Sipilä J, Krause O, Leskelä M, Repo T (2006) Copper-2,2′-bipyridines: catalytic performance and structures in aqueous alkaline solutions. Appl Catal A 302(2):250–256CrossRefGoogle Scholar
  83. Kruger JS, Cleveland NS, Zhang S, Katahira R, Black BA, Chupka GM, Lammens T, Hamilton PG, Biddy MJ, Beckham GT (2016) Lignin depolymerization with nitrate-intercalated hydrotalcite catalysts. ACS Catalysis 6(2):1316–1328CrossRefGoogle Scholar
  84. Kumari N, Olesen JK, Pedersen CM, Bols M (2011) Synthesis of 5-bromomethylfurfural from cellulose as a potential intermediate for biofuel. Eur J Org Chem 7:1266–1270CrossRefGoogle Scholar
  85. Kunkes EL, Soares RR, Simonetti DA, Dumesic JA (2009) An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl Catal B 90(3):693–698CrossRefGoogle Scholar
  86. Lakshmi Ch V, Ravuru U, Kotra V, Bankupalli S, Prasad R (2009) Novel route for recovery of glycerol from aqueous solutions by reversible reactionsGoogle Scholar
  87. Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M, Sreedhar B, Hebalkar NY (2010) Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J Phys Chem C 114(50):22181–22189CrossRefGoogle Scholar
  88. Lam E, Chong JH, Majid E, Liu Y, Hrapovic S, Leung AC, Luong JH (2012) Carbocatalytic dehydration of xylose to furfural in water. Carbon 50(3):1033–1043CrossRefGoogle Scholar
  89. Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chemsuschem 5(1):150–166CrossRefGoogle Scholar
  90. Leung DY, Wu X, Leung M (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095CrossRefGoogle Scholar
  91. Li Q-S, Su M-G, Wang S (2007) Densities and excess molar volumes for binary glycerol + 1-propanol, + 2-propanol, + 1,2-propanediol, and + 1,3-propanediol mixtures at different temperatures. J Chem Eng Data 52(3):1141–1145CrossRefGoogle Scholar
  92. Lima S, Antunes MM, Pillinger M, Valente AA (2011) Ionic liquids as tools for the acid-catalyzed hydrolysis/dehydration of Saccharides to furanic aldehydes. Chem Cat Chem 3(11):1686–1706Google Scholar
  93. Lin Y-C (2013) Catalytic valorization of glycerol to hydrogen and syngas. Int J Hydrogen Energy 38(6):2678–2700CrossRefGoogle Scholar
  94. Liu Q, Tian M, Ding T, Shi R, Feng Y, Zhang L, Chen D, Tian W (2007) Preparation and characterization of a thermoplastic poly (glycerol sebacate) elastomer by two-step method. J Appl Polym Sci 103(3):1412–1419CrossRefGoogle Scholar
  95. Liu G, Wu J, Zhang IY, Chen Z-N, Li Y-W, Xu X (2011) Theoretical studies on thermochemistry for conversion of 5-chloromethylfurfural into valuable chemicals. J Phys Chem A 115(46):13628–13641CrossRefGoogle Scholar
  96. López JÁS, MdlÁM Santos, Pérez AFC, Martín AM (2009) Anaerobic digestion of glycerol derived from biodiesel manufacturing. Biores Technol 100(23):5609–5615CrossRefGoogle Scholar
  97. Magnusson L-E, Anisimov MP, Koropchak JA (2010) Evidence for sub-3 nanometer neutralized particle detection using glycerol as a condensing fluid. J Aerosol Sci 41(7):637–654CrossRefGoogle Scholar
  98. Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: hemicellulose/xylosederived biochemical. Biofuels, Bioprod Biorefin 2(5):438–454CrossRefGoogle Scholar
  99. Manosak R, Limpattayanate S, Hunsom M (2011) Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption. Fuel Process Technol 92(1):92–99CrossRefGoogle Scholar
  100. Marcotullio G, De Jong W (2010) Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions. Green Chem 12(10):1739–1746CrossRefGoogle Scholar
  101. Marshall A, Haverkamp R (2008) Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int J Hydrogen Energy 33(17):4649–4654CrossRefGoogle Scholar
  102. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem 120(41):8042–8044CrossRefGoogle Scholar
  103. May A, Salvadó J, Torras C, Montané D (2010) Catalytic gasification of glycerol in supercritical water. Chem Eng J 160(2):751–759CrossRefGoogle Scholar
  104. Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja RA, Helén H, Hyvönen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114(1):457–466CrossRefGoogle Scholar
  105. Modig T, Granath K, Adler L, Lidén G (2007) Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 75(2):289CrossRefGoogle Scholar
  106. Montero JM, Gai P, Wilson K, Lee AF (2009) Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chem 11(2):265–268CrossRefGoogle Scholar
  107. Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P (1998) Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crops Prod 7(2):95–99CrossRefGoogle Scholar
  108. Nascimento JE, Barcellos AM, Sachini M, Perin G, Lenardão EJ, Alves D, Jacob RG, Missau F (2011) Catalyst-free synthesis of octahydroacridines using glycerol as recyclable solvent. Tetrahedron Lett 52(20):2571–2574CrossRefGoogle Scholar
  109. Nimlos MR, Qian X, Davis M, Himmel ME, Johnson DK (2006) Energetics of xylose decomposition as determined using quantum mechanics modeling. J Phys Chem A 110(42):11824–11838CrossRefGoogle Scholar
  110. O’Neill R, Ahmad MN, Vanoye L, Aiouache F (2009) Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite. Ind Eng Chem Res 48(9):4300–4306CrossRefGoogle Scholar
  111. Pan Y, Wang X, Yuan Q (2011) Thermal, kinetic, and mechanical properties of glycerol-plasticized wheat gluten. J Appl Polym Sci 121(2):797–804CrossRefGoogle Scholar
  112. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34(1):29–41CrossRefGoogle Scholar
  113. Parzuchowski PG, Grabowska M, Jaroch M, Kusznerczuk M (2009) Synthesis and characterization of hyperbranched polyesters from glycerol-based AB2 monomer. J Polym Sci Part A: Polym Chem 47(15):3860–3868CrossRefGoogle Scholar
  114. Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15(8):5258–5272CrossRefGoogle Scholar
  115. Perego C, Bosetti A (2011) Biomass to fuels: the role of zeolite and mesoporous materials. Microporous Mesoporous Mater 144(1):28–39CrossRefGoogle Scholar
  116. Pompeo F, Santori G, Nichio NN (2010) Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. Int J Hydrogen Energy 35(17):8912–8920CrossRefGoogle Scholar
  117. Qi X, Watanabe M, Aida TM, Smith RL (2010) Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. Chemsuschem 3(9):1071–1077CrossRefGoogle Scholar
  118. Qi X, Guo H, Li L (2011) Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind Eng Chem Res 50(13):7985–7989CrossRefGoogle Scholar
  119. Qi X, Watanabe M, Aida TM, Smith RL (2012) Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Biores Technol 109:224–228CrossRefGoogle Scholar
  120. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843CrossRefGoogle Scholar
  121. Rennard DC, Kruger JS, Schmidt LD (2009) Autothermal catalytic partial oxidation of glycerol to syngas and to non-equilibrium products. Chemsuschem 2(1):89–98CrossRefGoogle Scholar
  122. Roberts V, Fendt S, Lemonidou AA, Li X, Lercher JA (2010) Influence of alkali carbonates on benzyl phenyl ether cleavage pathways in superheated water. Appl Catal B 95(1):71–77CrossRefGoogle Scholar
  123. Roberts V, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem—Eur J 17(21):5939–5948CrossRefGoogle Scholar
  124. Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937CrossRefGoogle Scholar
  125. Rosatella AA, Simeonov SP, Frade RF, Afonso CA (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793CrossRefGoogle Scholar
  126. Saleh J, Tremblay AY, Dubé MA (2010) Glycerol removal from biodiesel using membrane separation technology. Fuel 89(9):2260–2266CrossRefGoogle Scholar
  127. Santacesaria E, Vicente GM, Di Serio M, Tesser R (2012) Main technologies in biodiesel production: state of the art and future challenges. Catal Today 195(1):2–13CrossRefGoogle Scholar
  128. Seo H-B, Yeon J-H, Jeong MH, Kang DH, Lee H-Y, Jung K-H (2009) Aeration alleviates ethanol inhibition and glycerol production during fed-batch ethanol fermentation. Biotechnol Bioprocess Eng 14(5):599CrossRefGoogle Scholar
  129. Sergeev AG, Webb JD, Hartwig JF (2012) A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J Am Chem Soc 134(50):20226–20229CrossRefGoogle Scholar
  130. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4(1):83–99CrossRefGoogle Scholar
  131. Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40(11):5266–5281CrossRefGoogle Scholar
  132. Sharma Y, Singh B, Upadhyay S (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87(12):2355–2373CrossRefGoogle Scholar
  133. Shi S, Guo H, Yin G (2011a) Synthesis of maleic acid from renewable resources: catalytic oxidation of furfural in liquid media with dioxygen. Catal Commun 12(8):731–733CrossRefGoogle Scholar
  134. Shi X, Wu Y, Li P, Yi H, Yang M, Wang G (2011b) Catalytic conversion of xylose to furfural over the solid acid/ZrO2-Al2O3/SBA-15 catalysts. Carbohyd Res 346(4):480–487CrossRefGoogle Scholar
  135. Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu. Pd and Ni Catal Lett 141(6):784–791CrossRefGoogle Scholar
  136. Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed C–O Bond Cleavage: application to degradation of lignin model compounds. Angew Chem Int Ed 49(22):3791–3794CrossRefGoogle Scholar
  137. Ståhlberg T, Fu W, Woodley JM, Riisager A (2011) Synthesis of 5-(Hydroxymethyl) furfural in Ionic liquids: paving the way to renewable chemicals. Chemsuschem 4(4):451–458CrossRefGoogle Scholar
  138. Sturgeon MR, O’Brien MH, Ciesielski PN, Katahira R, Kruger JS, Chmely SC, Hamlin J, Lawrence K, Hunsinger GB, Foust TD (2014) Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem 16(2):824–835CrossRefGoogle Scholar
  139. Sun W, Liu D-Y, Zhu H-Y, Shi L, Sun Q (2010) A new efficient approach to 3-methylindole: vapor-phase synthesis from aniline and glycerol over Cu-based catalyst. Catal Commun 12(2):147–150CrossRefGoogle Scholar
  140. Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ Sci 4(3):793–804CrossRefGoogle Scholar
  141. Takagaki A, Ohara M, Nishimura S, Ebitani K (2010) One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts. Chem Lett 39(8):838–840CrossRefGoogle Scholar
  142. Tan KT, Lee KT, Mohamed AR (2010) A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: an optimization study via response surface methodology. Biores Technol 101(3):965–969CrossRefGoogle Scholar
  143. Tao F, Song H, Chou L (2010) Efficient process for the conversion of xylose to furfural with acidic ionic liquid. Can J Chem 89(1):83–87CrossRefGoogle Scholar
  144. Thring R (1994) Alkaline degradation of ALCELL® lignin. Biomass Bioenerg 7(1–6):125–130CrossRefGoogle Scholar
  145. Tizvar R, McLean DD, Kates M, Dubé MA (2009) Optimal separation of glycerol and methyl oleate via liquid–liquid extraction. J Chem Eng Data 54(5):1541–1550CrossRefGoogle Scholar
  146. Toledano A, Serrano L, Labidi J (2014) Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 116:617–624CrossRefGoogle Scholar
  147. Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A 385(1):1–13CrossRefGoogle Scholar
  148. Towey J, Soper A, Dougan L (2011) The structure of glycerol in the liquid state: a neutron diffraction study. Phys Chem Chem Phys 13(20):9397–9406CrossRefGoogle Scholar
  149. Union E (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union 5:2009Google Scholar
  150. Vaidya PD, Rodrigues AE (2009) Glycerol reforming for hydrogen production: a review. Chem Eng Technol 32(10):1463–1469CrossRefGoogle Scholar
  151. Valliyappan T, Bakhshi N, Dalai A (2008a) Pyrolysis of glycerol for the production of hydrogen or syn gas. Biores Technol 99(10):4476–4483CrossRefGoogle Scholar
  152. Valliyappan T, Ferdous D, Bakhshi N, Dalai A (2008b) Production of hydrogen and syngas via steam gasification of glycerol in a fixed-bed reactor. Top Catal 49(1–2):59–67CrossRefGoogle Scholar
  153. Vassilev SV, Vassileva CG, Vassilev VS (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158:330–350CrossRefGoogle Scholar
  154. Vigier KDO, Benguerba A, Barrault J, Jérôme F (2012) Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media. Green Chem 14(2):285–289CrossRefGoogle Scholar
  155. Voitl T, Rudolf von Rohr P (2008) Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. Chemsuschem 1(8–9):763–769CrossRefGoogle Scholar
  156. Wang W (2010) Thermodynamic analysis of glycerol partial oxidation for hydrogen production. Fuel Process Technol 91(11):1401–1408CrossRefGoogle Scholar
  157. Wang Z, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19(3):201–223CrossRefGoogle Scholar
  158. Wang X, Li M, Wang M, Wang H, Li S, Wang S, Ma X (2009) Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel 88(11):2148–2153CrossRefGoogle Scholar
  159. Wang P, Yu H, Zhan S, Wang S (2011) Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Biores Technol 102(5):4179–4183CrossRefGoogle Scholar
  160. West RM, Liu ZY, Peter M, Gärtner CA, Dumesic JA (2008) Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. J Mol Catal A Chem 296(1):18–27CrossRefGoogle Scholar
  161. White CA, Kennedy JF (1985) In: Higuchi T, Chang H-M, Kirk TK (eds) Recent advances in lignin biodegradation research. Uni Publishers Co., JapanGoogle Scholar
  162. Wolfson A, Dlugy C, Shotland Y, Tavor D (2009) Glycerol as solvent and hydrogen donor in transfer hydrogenation–dehydrogenation reactions. Tetrahedron Lett 50(43):5951–5953CrossRefGoogle Scholar
  163. Woodford JJ, Dacquin J-P, Wilson K, Lee AF (2012) Better by design: nanoengineered macroporous hydrotalcites for enhanced catalytic biodiesel production. Energy Environ Sci 5(3):6145–6150CrossRefGoogle Scholar
  164. Xi Y, Davis RJ (2010) Glycerol-intercalated Mg-Al hydrotalcite as a potential solid base catalyst for transesterification. Clays Clay Miner 58(4):475–485CrossRefGoogle Scholar
  165. Xiang X, He L, Yang Y, Guo B, Tong D, Hu C (2011) A one-pot two-step approach for the catalytic conversion of glucose into 2, 5-diformylfuran. Catal Lett 141(5):735–741CrossRefGoogle Scholar
  166. Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43(22):7485–7500CrossRefGoogle Scholar
  167. Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sustain Energy Rev 18:184–193CrossRefGoogle Scholar
  168. Yang W, Sen A (2010) One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuels. Chemsuschem 3(5):597–603CrossRefGoogle Scholar
  169. Ye J, Sha Y, Zhang Y, Yuan Y, Wu H (2011) Glycerol extracting dealcoholization for the biodiesel separation process. Biores Technol 102(7):4759–4765CrossRefGoogle Scholar
  170. Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-Hydroxymethylfurfural from glucose and fructose. Angew Chem 120(48):9485–9488CrossRefGoogle Scholar
  171. Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2010) Ionic liquid-mediated formation of 5-hydroxymethylfurfural. A promising biomass-derived building block. Chem Rev 111(2):397–417CrossRefGoogle Scholar
  172. Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Biores Technol 101(3):1111–1114CrossRefGoogle Scholar
  173. Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int J Hydrogen Energy 32(13):2367–2373CrossRefGoogle Scholar
  174. Zhang J, Zhuang J, Lin L, Liu S, Zhang Z (2012) Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass Bioenerg 39:73–77CrossRefGoogle Scholar
  175. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316(5831):1597–1600CrossRefGoogle Scholar
  176. Zhao Y, Xu Q, Pan T, Zuo Y, Fu Y, Guo Q-X (2013) Depolymerization of lignin by catalytic oxidation with aqueous polyoxometalates. Appl Catal A 467:504–508CrossRefGoogle Scholar
  177. Zhou C-HC, Beltramini JN, Fan Y-X, Lu GM (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549CrossRefGoogle Scholar
  178. Zhou C-H, Xia X, Lin C-X, Tong D-S, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588–5617CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NANOCATUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations