Skip to main content

Catalysis in Fuel Cells (PEMC, SOFC)

  • Chapter
  • First Online:
Catalysis for Green Energy and Technology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Energy is the basis of economic development, there is no modern civilization without the development of the energy industry. Humans have been conducting efforts to improve the high efficiency use of energy resources. There has been a number of revolutionary changes in the way to use energy during the history, from the original steam engine to internal combustion engines. Fuel cells are energy devices which transfer chemical energy stored in the fuel and oxidant directly into electrical energy. When fuel cells are continuously supplied fuel and oxidant, electricity can be made constantly. According to the different electrolytes, fuel cells can be divided into several types, such as alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), and proton exchange membrane fuel cell (PEMFC), etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksoy S, Caglar Y (2014) Structural transformations of TiO 2 films with deposition temperature and electrical properties of nanostructure n-TiO 2/p-Si heterojunction diode. J Alloy Compd 613:330–337

    Article  Google Scholar 

  • Allaoui A, Bai S, Cheng H-M, Bai J (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998

    Article  Google Scholar 

  • An T, Zhou Y, Liu G, Tian Z, Li J, Qiu H, Tong G (2007) Genetic diversity and phylogenetic analysis of glycoprotein 5 of PRRSV isolates in mainland China from 1996 to 2006: coexistence of two NA-subgenotypes with great diversity. Vet Microbiol 123(1):43–52

    Article  Google Scholar 

  • Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88(1):1–24

    Google Scholar 

  • Appleby A (1996) Fuel cell technology: status and future prospects. Energy 21(7–8):521–653

    Article  Google Scholar 

  • Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrog Energy 34(2):615–627

    Article  Google Scholar 

  • Barbir F (2005) PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy 78(5):661–669

    Article  Google Scholar 

  • Basri S, Kamarudin SK, Daud WRW, Yaakub Z (2010) Nanocatalyst for direct methanol fuel cell (DMFC). Int J Hydrog Energy 35(15):7957–7970

    Article  Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

    Google Scholar 

  • Bettinger CJ, Zhang Z, Gerecht S, Borenstein JT, Langer R (2008) Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater 20(1):99–103

    Article  Google Scholar 

  • Bimboim H, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7(6):1513–1523

    Article  Google Scholar 

  • Cahen D, Hodes G, Grätzel M, Guillemoles JF, Riess I (2000) Nature of photovoltaic action in dye-sensitized solar cells. J Phys Chem B 104(9):2053–2059

    Article  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1):33–177

    Article  Google Scholar 

  • Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785

    Article  Google Scholar 

  • Chen S, Duan J, Jaroniec M, Qiao SZ (2014) Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv Mater 26(18):2925–2930

    Article  Google Scholar 

  • Chen Z, Deng W, Wang X, Yan Y (2007) Durability and activity study of single-walled, double-walled and multi-walled carbon nanotubes supported Pt catalyst for PEMFCs. ECS Trans 11(1):1289–1299

    Article  Google Scholar 

  • Ciit KT (2016) Photocatalytical degradation of Congo red (CR) dye via nano Titanium dioxide coated glass bead under UV light. COMSATS Institute of Information Technology, Lahore

    Google Scholar 

  • Crespi VH, Benedict LX, Cohen ML, Louie SG (1996) Prediction of a pure-carbon planar covalent metal. Phys Rev B 53(20):R13303

    Article  Google Scholar 

  • Davis SC, Klabunde KJ (1982) Unsupported small metal particles: preparation, reactivity, and characterization. Chem Rev 82(2):153–208

    Article  Google Scholar 

  • Deng Y, Sun C-Q, Cao S-J, Lin T, Yuan S-S, Zhang H-B, Zhai S-L, Huang L, Shan T-L, Zheng H (2012) High prevalence of bovine viral diarrhea virus 1 in Chinese swine herds. Vet Microbiol 159(3):490–493

    Article  Google Scholar 

  • Desportes S, Steinmetz D, Hemati M, Philippot K, Chaudret B (2005) Production of supported asymmetric catalysts in a fluidised bed. Powder Technol 157(1):12–19

    Article  Google Scholar 

  • Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5(11):9217–9233

    Article  Google Scholar 

  • Fang B, Kim JH, Kim M-S, Yu J-S (2012) Hierarchical nanostructured carbons with meso–macroporosity: design, characterization, and applications. Acc Chem Res 46(7):1397–1406

    Article  Google Scholar 

  • Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4(6):1948–1963

    Article  Google Scholar 

  • Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1):9–35

    Article  Google Scholar 

  • Gemmen RS, Liese E, Rivera JG, Jabbari F, Brouwer J (2000) Development of dynamic modeling tools for solid oxide and molten carbonate hybrid fuel cell gas turbine systems. In: ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, pp V002T002A068-V002T002A068

    Google Scholar 

  • Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23(8):1443–1484

    Article  Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  • Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887

    Article  Google Scholar 

  • Gyenge E (2004) Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim Acta 49(6):965–978

    Article  Google Scholar 

  • Hamrock SJ, Rivard LM, Moore GGI, Freemyer HT (2008) Polymer electrolyte membrane. Google Patents

    Google Scholar 

  • He D, Zeng C, Xu C, Cheng N, Li H, Mu S, Pan M (2011) Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 27(9):5582–5588

    Article  Google Scholar 

  • Highfield J, Yasuda K, Siroma Z, Ioroi T, Nishimura Y, Oguro K Innovative electrocatalyst development and ionomer membrane studies for PEM electrochemical applications at the Osaka National Research Institute

    Google Scholar 

  • Hirschenhofer J, Stauffer D, Engleman R, Klett M (2000) Fuel cell handbook. Business/Technology Books, Home FH The Beaulieu Hydrogen Home

    Google Scholar 

  • Hu Y, Shenderova OA, Hu Z, Padgett CW, Brenner DW (2006) Carbon nanostructures for advanced composites. Rep Prog Phys 69(6):1847

    Google Scholar 

  • Lackner KS, Dahlgren E, Graves C, Meinrenken C, Socci T, Archer L, Banerjee S, Castaldi M, Elimelech M, Fthenakis V (2010) Closing the carbon cycle: Liquid fuels from air, water and sunshine. Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York

    Google Scholar 

  • Larson A, Keach S United Technologies Corporation Fuel Cells: Innovation Inside a Large Firm

    Google Scholar 

  • Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36(5):507–522

    Article  Google Scholar 

  • Lee H-J, Kim J-H, Won J-H, Lim J-M, Hong YT, Lee S-Y (2013) Highly flexible, proton-conductive silicate glass electrolytes for medium-temperature/low-humidity proton exchange membrane fuel cells. ACS Appl Mater Interfaces 5(11):5034–5043

    Article  Google Scholar 

  • Lenzmann F, Krueger J, Burnside S, Brooks K, Grätzel M, Gal D, Rühle S, Cahen D (2001) Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: Indication for electron injection from higher excited dye states. J Phys Chem B 105(27):6347–6352

    Article  Google Scholar 

  • Li F, Xu J, Dou Z-T, Huang Y-L (2004) Data mining-based credit evaluation for users of credit card. In: Proceedings of 2004 international conference on machine learning and cybernetics. IEEE, pp 2586–2591

    Google Scholar 

  • Liang B, Cheng H-Y, Kong D-Y, Gao S-H, Sun F, Cui D, Kong F-Y, Zhou A-J, Liu W-Z, Ren N-Q (2013) Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. Environ Sci Technol 47(10):5353–5361

    Article  Google Scholar 

  • Liu Z, Ling XY, Su X, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108(24):8234–8240

    Article  Google Scholar 

  • Luong JH, Male KB, Glennon JD (2009) Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134(10):1965–1979

    Article  Google Scholar 

  • Munson RA (1964) Self-dissociative equilibria in molten phosphoric acid. J Phys Chem 68(11):3374–3377

    Article  Google Scholar 

  • Pauniaho S-L, Salonen J, Helminen M, Heikinheimo O, Vettenranta K, Heikinheimo M (2014) Germ cell tumors in children and adolescents in Finland: trends over 1969–2008. Cancer Causes Control 25(10):1337–1341

    Article  Google Scholar 

  • Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37(11):2530–2542

    Article  Google Scholar 

  • Qin Y-H, Jia Y-B, Jiang Y, Niu D-F, Zhang X-S, Zhou X-G, Niu L, Yuan W-K (2012) Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation. Int J Hydrog Energy 37(9):7373–7377

    Google Scholar 

  • Rabis A, Rodriguez P, Schmidt TJ (2012) Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. Acs Catal 2(5):864–890

    Article  Google Scholar 

  • Rice C, Ha S, Masel R, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111(1):83–89

    Article  Google Scholar 

  • Robertson NJ, Kostalik HA IV, Clark TJ, Mutolo PF, Abruña HD, Coates GW (2010) Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. J Am Chem Soc 132(10):3400–3404

    Article  Google Scholar 

  • Salgado J, Alcaide F, Álvarez G, Calvillo L, Lázaro M, Pastor E (2010) Pt–Ru electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell. J Power Sources 195(13):4022–4029

    Article  Google Scholar 

  • Serp P, Figueiredo JL (2009) Carbon materials for catalysis. Wiley, Hoboken

    Google Scholar 

  • Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19(1):46–59

    Article  Google Scholar 

  • Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170–173

    Article  Google Scholar 

  • Shelef M, McCabe RW (2000) Twenty-five years after introduction of automotive catalysts: what next? Catal Today 62(1):35–50

    Article  Google Scholar 

  • Slinn M, Kendall K, Mallon C, Andrews J (2008) Steam reforming of biodiesel by-product to make renewable hydrogen. Biores Technol 99(13):5851–5858

    Article  Google Scholar 

  • Subramanian V, Wolf E, Kamat PV (2001) Semiconductor—metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105(46):11439–11446

    Article  Google Scholar 

  • Tahir M, Amin NS (2013) Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Convers Manag 76:194–214

    Article  Google Scholar 

  • Takenaka S, Matsumori H, Nakagawa K, Matsune H, Tanabe E, Kishida M (2007) Improvement in the durability of Pt electrocatalysts by coverage with silica layers. J Phys Chem C 111(42):15133–15136

    Article  Google Scholar 

  • Tang S, Sun G, Sun S, Qi J, Xin Q, Haarberg GM (2009) Double-walled carbon nanotubes as an electrode for direct methanol fuel cell applications. ECS Trans 16(50):113–122

    Article  Google Scholar 

  • Tong Z-B, Gold L, De Pol A, Vanevski K, Dorward H, Sena P, Palumbo C, Bondy CA, Nelson LM (2004) Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology 145(3):1427–1434

    Article  Google Scholar 

  • Um S, Wang CY, Chen K (2000) Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc 147(12):4485–4493

    Article  Google Scholar 

  • Wang C-Y (2004) Fundamental models for fuel cell engineering. Chem Rev 104(10):4727–4766

    Article  Google Scholar 

  • Wang D-W, Su D (2014) Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci 7(2):576–591

    Article  Google Scholar 

  • Wang F, Bing Z, Zhang Y, Ao B, Zhang S, Ye C, He J, Ding N, Ye W, Xiong J (2013) Quantitative proteomic analysis for radiation-induced cell cycle suspension in 92-1 melanoma cell line. J Radiat Res rrt010

    Google Scholar 

  • Wang J, Yin G, Shao Y, Wang Z, Gao Y (2008) Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support. J Phys Chem C 112(15):5784–5789

    Article  Google Scholar 

  • Wang Y-J, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115(9):3433–3467

    Article  Google Scholar 

  • Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1):14–31

    Article  Google Scholar 

  • Wu G, Xu B-Q (2007) Carbon nanotube supported Pt electrodes for methanol oxidation: a comparison between multi-and single-walled carbon nanotubes. J Power Sources 174(1):148–158

    Article  MathSciNet  Google Scholar 

  • Wu G, Johnston CM, Mack NH, Artyushkova K, Ferrandon M, Nelson M, Lezama-Pacheco JS, Conradson SD, More KL, Myers DJ (2011) Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J Mater Chem 21(30):11392–11405

    Article  Google Scholar 

  • Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B Chem 5(1–4):7–19

    Article  Google Scholar 

  • Yang G, Han H, Li T, Du C (2012) Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent. Carbon 50(10):3753–3765

    Article  Google Scholar 

  • Zhang Y, Zhang X, Liu Z, Bian Y, Jiang J (2005) Structures and properties of 1, 8, 15, 22-tetra substituted phthalocyaninato-lead complexes: the substitutional effect study based on density functional theory calculations. J Phys Chem A 109(28):6363–6370

    Article  Google Scholar 

  • Zhang W, Sherrell P, Minett AI, Razal JM, Chen J (2010) Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy Environ Sci 3(9):1286–1293

    Article  Google Scholar 

  • Zhang S, Shao Y, Yin G, Lin Y (2013) Recent progress in nanostructured electrocatalysts for PEM fuel cells. J Mater Chem A 1(15):4631–4641

    Article  Google Scholar 

  • Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3(10):1437–1446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Bagheri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bagheri, S. (2017). Catalysis in Fuel Cells (PEMC, SOFC). In: Catalysis for Green Energy and Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-43104-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43104-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43103-1

  • Online ISBN: 978-3-319-43104-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics