Skip to main content

Catalytic Transformation of CO2 to Fuels

  • Chapter
  • First Online:
Book cover Catalysis for Green Energy and Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 925 Accesses

Abstract

By the year 2050, the European Commission are committed to reduce the emissions of greenhouse gas to 80–95% through the “Energy Roadmap 2050” that was adopted on December 15, 2011 (Schleicher-Tappeser 2012). The routes on system of energy for decarbonization was explored by this Energy Roadmap 2050, and in order to achieve this objective, many relevant contributions have been done, which has effects not only at the European but also worldwide level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajhar M, Travesset M, Yüce S, Melin T (2010) Siloxane removal from landfill and digester gas–a technology overview. Biores Technol 101(9):2913–2923

    Article  Google Scholar 

  • An X, Zuo Y-Z, Zhang Q, D-z Wang, Wang J-F (2008) Dimethyl ether synthesis from CO2 hydrogenation on a CuO–ZnO–Al2O3–ZrO2/HZSM-5 bifunctional catalyst. Ind Eng Chem Res 47(17):6547–6554

    Article  Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781

    Article  Google Scholar 

  • Arakawa H (1998) Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2. Stud Surf Sci Catal 114:19–30

    Article  Google Scholar 

  • Boyer L, Vega J, Klasson K, Clausen E, Gaddy J (1992) The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture. Biomass Bioenerg 3(1):41–48

    Article  Google Scholar 

  • Yong Y, Mims CA, Disselkamp RS, Ja-Hun K, Peden CHF, Campbell C (2010) (Non)formation of methanol by direct hydrogenation of formate on copper catalysts. J Phys Chem 100(114):17205–17211

    Google Scholar 

  • Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3):191–205

    Article  Google Scholar 

  • Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. Chemsuschem 3(2):195–208

    Article  Google Scholar 

  • Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenhouse Gases Sci Technol 1(1):21–35

    Article  Google Scholar 

  • Centi G, Lanzafame P, Perathoner S (2011a) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167(1):14–30

    Article  Google Scholar 

  • Centi G, Perathoner S, Passalacqua R, Ampelli C (2011b) Solar production of fuels from water and CO2. In: Nazim Z, Muradov T, Nejat V (eds) Carbon-neutral fuels and energy carriers series: green chemistry and chemical engineering CRC Press (Taylor & Francis group), Boca Raton, FL (US), pp 291–323

    Google Scholar 

  • Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731

    Article  Google Scholar 

  • Chang J, Fu Y, Luo Z (2012) Experimental study for dimethyl ether production from biomass gasification and simulation on dimethyl ether production. Biomass Bioenerg 39:67–72

    Article  Google Scholar 

  • Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125(13):3680–3681

    Article  Google Scholar 

  • Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15(1):53–66

    Article  Google Scholar 

  • Cherubini F, Strømman AH (2011) Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod Biorefin 5(5):548–561

    Article  Google Scholar 

  • Clausen LR, Elmegaard B, Houbak N (2010a) Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy 35(12):4831–4842

    Article  Google Scholar 

  • Clausen LR, Houbak N, Elmegaard B (2010b) Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water. Energy 35(5):2338–2347

    Article  Google Scholar 

  • da Silva AL, Dick LFP, Müller IL (2012) Performance of a PEMFC system integrated with a biogas chemical looping reforming processor: a theoretical analysis and comparison with other fuel processors (steam reforming, partial oxidation and auto-thermal reforming). Int J Hydrogen Energy 37(8):6580–6600

    Article  Google Scholar 

  • De Wild P, Nyqvist R, De Bruijn F, Stobbe E (2006) Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications. J Power Sources 159(2):995–1004

    Article  Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116

    Article  Google Scholar 

  • Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manag 47(13):1711–1722

    Article  Google Scholar 

  • Ihm S-K, Baek S-W, Park Y-K, Jeon J-K (2003) CO2 hydrogenation over copper-based hybrid catalysts for the synthesis of oxygenates. ACS Publications

    Google Scholar 

  • Jiang Z, Xiao T, Vá Kuznetsov, Pá Edwards (2010) Turning carbon dioxide into fuel. Philos Trans R Soc Lond A Math Phys Eng Sci 368(1923):3343–3364

    Article  Google Scholar 

  • Kazemimoghadam M, Mohammadi T (2010) The pilot-scale pervaporation plant using tubular-type module with nano pore zeolite membrane. Desalination 255(1):196–200

    Article  Google Scholar 

  • Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chemsuschem 5(1):150–166

    Article  Google Scholar 

  • Lantz E, Wiser R, Hand M (2012) The past and future cost of wind energy. Report No. NREL/TP-6A20-53510. National Renewable Energy Laboratory, Golden, CO,

    Google Scholar 

  • Lau C, Allen D, Tsolakis A, Golunski SE, Wyszynski M (2012) Biogas upgrade to syngas through thermochemical recovery using exhaust gas reforming. Biomass Bioenerg 40:86–95

    Article  Google Scholar 

  • Liang X-L, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B 88(3):315–322

    Article  Google Scholar 

  • Lim H-W, Park M-J, Kang S-H, Chae H-J, Bae JW, Jun K-W (2009) Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation. Ind Eng Chem Res 48(23):10448–10455

    Article  Google Scholar 

  • Liu X-M, Lu G, Yan Z-F, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42(25):6518–6530

    Article  Google Scholar 

  • Liu P, Choi Y, Yang Y, White MG (2009) Methanol synthesis from H2 and CO2 on a Mo6S8 cluster: a density functional study. J Phy Chem A 114(11):3888–3895

    Article  Google Scholar 

  • Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3):221–231

    Article  Google Scholar 

  • Mandl MG (2010) Status of green biorefining in Europe. Biofuels Bioprod Biorefin 4(3):268–274

    Article  Google Scholar 

  • McBean EA (2008) Siloxanes in biogases from landfills and wastewater digesters. Can J Civ Eng 35(4):431–436

    Article  Google Scholar 

  • Menegazzo F, Pinna F, Signoretto M, Trevisan V, Boccuzzi F, Chiorino A, Manzoli M (2008) Highly dispersed gold on zirconia: characterization and activity in low-temperature water gas shift tests. Chemsuschem 1(4):320–326

    Article  Google Scholar 

  • Mota N, Alvarez-Galvan C, Navarro R, Fierro J (2011) Biogas as a source of renewable syngas production: advances and challenges. Biofuels 2(3):325–343

    Article  Google Scholar 

  • Osorio F, Torres J (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34(10):2164–2171

    Article  Google Scholar 

  • Piccolo C, Bezzo F (2009) A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenerg 33(3):478–491

    Article  Google Scholar 

  • Powell E, Hill G (2009) Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des 87(9):1340–1348

    Article  Google Scholar 

  • Quadrelli EA, Centi G, Duplan JL, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. Chemsuschem 4(9):1194–1215

    Article  Google Scholar 

  • Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski R (2009) Catalytic activation of CO2: use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal Today 144(3):318–323

    Article  Google Scholar 

  • Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: a technical appraisal and economic feasibility evaluation. Biomass Bioenerg 35(9):3865–3876

    Article  Google Scholar 

  • Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenerg 35(5):1633–1645

    Article  Google Scholar 

  • Saito M, Murata K (2004) Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction. Catal Surv Asia 8(4):285–294

    Article  Google Scholar 

  • Schleicher-Tappeser R (2012) How renewables will change electricity markets in the next five years. Energy policy 48:64–75

    Article  Google Scholar 

  • Supekar SD, Skerlos SJ (2014) Market-driven emissions from recovery of carbon dioxide gas. Environ Sci Technol 48(24):14615–14623

    Article  Google Scholar 

  • Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. Chemsuschem 1(1–2):75–78

    Article  Google Scholar 

  • Tang Q-L, Hong Q-J, Liu Z-P (2009) CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo. J Catal 263(1):114–122

    Article  Google Scholar 

  • Toyir J, Miloua R, Elkadri N, Nawdali M, Toufik H, Miloua F, Saito M (2009) Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Physics Procedia 2(3):1075–1079

    Article  Google Scholar 

  • Wang J, Zeng C (2005) Al2O3 effect on the catalytic activity of Cu–ZnO–Al2O3–SiO2 catalysts for dimethyl ether synthesis from CO2 hydrogenation. J Nat Gas Chem 14(3):156–162

    MathSciNet  Google Scholar 

  • Wang S, Mao D, Guo X, Wu G, Lu G (2009) Dimethyl ether synthesis via CO2 hydrogenation over CuO–TiO2–ZrO2/HZSM-5 bifunctional catalysts. Catal Commun 10(10):1367–1370

    Article  Google Scholar 

  • Wellisch M, Jungmeier G, Karbowski A, Patel MK, Rogulska M (2010) Biorefinery systems—potential contributors to sustainable innovation. Biofuels Bioprod Biorefin 4(3):275–286

    Article  Google Scholar 

  • Woods J, Black M, Murphy R (2008) Future feedstocks for biofuel systems. Biofuels: environmental consequences and interactions with changing land use. In: Proceedings of the scientific committee on problems of the environment (SCOPE) international biofuels project rapid assessment, pp 22–25

    Google Scholar 

  • Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy 34(16):6646–6654

    Article  Google Scholar 

  • Xu Y, Isom L, Hanna MA (2010) Adding value to carbon dioxide from ethanol fermentations. Biores Technol 101(10):3311–3319

    Article  Google Scholar 

  • Yang R, Yu X, Zhang Y, Li W, Tsubaki N (2008) A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel 87(4):443–450

    Article  Google Scholar 

  • Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 150(1):55–60

    Article  Google Scholar 

  • Zhao Y, Chen J, Zhang J (2007) Effects of ZrO2 on the performance of CuO–ZnO–Al2O3/HZSM-5 catalyst for dimethyl ether synthesis from CO2 hydrogenation. J Nat Gas Chem 16(4):389–392

    Article  Google Scholar 

  • Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. Chemsuschem 3(10):1106–1133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Bagheri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bagheri, S. (2017). Catalytic Transformation of CO2 to Fuels. In: Catalysis for Green Energy and Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-43104-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43104-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43103-1

  • Online ISBN: 978-3-319-43104-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics