Skip to main content

Design of Catalysts, Characterization, Kinetics and Mechanisms of Reactions, Deactivation/Regeneration

  • Chapter
  • First Online:
Catalysis for Green Energy and Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 978 Accesses

Abstract

Catalysis is described as the acceleration of chemical reactions through the participation of unknown substances, known as catalysts. Catalysts usually exist as liquids or solids, but some may appear as gases. The appropriation amount of catalyst aids in prompting the thermodynamic rate of a reaction more attainable, but does not alter the composition of the thermodynamic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alborn TL (1989) Negotiating notation: chemical symbols and british society, 1831–1835. Ann Sci 46(5):437–460

    Article  Google Scholar 

  • Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5(1):145–269

    Article  Google Scholar 

  • Auroux A, Gervasini A (2003) Infrared spectroscopic study of the acidic character of modified alumina surfaces. Adsorpt Sci Technol 21(8):721–737

    Article  Google Scholar 

  • Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212(1):17–60

    Article  MathSciNet  Google Scholar 

  • Bartholomew CH, Farrauto RJ (2011) Fundamentals of industrial catalytic processes. Wiley, USA

    Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32

    Article  Google Scholar 

  • Borodziński A, Cybulski A (2000) The kinetic model of hydrogenation of acetylene–ethylene mixtures over palladium surface covered by carbonaceous deposits. Appl Catal A 198(1):51–66

    Article  Google Scholar 

  • Boudart M (1985) Heterogeneous catalysis by metals. J Mol Catal 30(1–2):27–38

    Article  Google Scholar 

  • Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW (2015) Cobalt–iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137(10):3638–3648

    Article  Google Scholar 

  • Busca G (2007) Acid catalysts in industrial hydrocarbon chemistry. Chem Rev 107(11):5366–5410

    Article  Google Scholar 

  • Campanati M, Fornasari G, Vaccari A (2003) Fundamentals in the preparation of heterogeneous catalysts. Catal Today 77(4):299–314

    Article  Google Scholar 

  • Che M (2013) Nobel Prize in chemistry 1912 to sabatier: organic chemistry or catalysis? Catal Today 218:162–171

    Article  Google Scholar 

  • Chiesa M, Giamello E, Che M (2010) EPR characterization and reactivity of surface-localized inorganic radicals and radical ions. Chem Rev 110(3):1320

    Article  Google Scholar 

  • Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35(9):791–797

    Article  Google Scholar 

  • Clarke JK, Creaner AC (1981) Advances in catalysis by alloys. Industrial & Engineering Chemistry Product Research and Development 20(4):574–593

    Article  Google Scholar 

  • Clugston M, Flemming R (2000) Advanced chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Coq B, Figueras F (2001) Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. J Mol Catal A Chem 173(1):117–134

    Article  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M, Grimes R (1988) Advanced inorganic chemistry, vol 5. Wiley, New York

    Google Scholar 

  • De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510

    Article  Google Scholar 

  • De Vos D, Thibault‐Starzyk F, Knops‐Gerrits P, Parton R, Jacobs P (1994) A critical overview of the catalytic potential of zeolite supported metal complexes. In: Macromolecular symposia, vol 1. Wiley Online Library, pp 157–184

    Google Scholar 

  • De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chem Rev 102(10):3615–3640

    Article  Google Scholar 

  • Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces. Annu Rev Phys Chem 43(1):437–463

    Article  Google Scholar 

  • Eckert H, Wachs IE (1989) Solid-state vanadium-51 NMR structural studies on supported vanadium (V) oxide catalysts: vanadium oxide surface layers on alumina and titania supports. J Phys Chem 93(18):6796–6805

    Article  Google Scholar 

  • Ertl G, Knözinger H, Weitkamp J (2008) Preparation of solid catalysts. Wiley, USA

    Google Scholar 

  • Fresco LO (2015) The new green revolution: bridging the gap between science and society. Curr Sci 109(3):430–438

    Google Scholar 

  • Gai PL (1999) Environmental high resolution electron microscopy of gas-catalyst reactions. Top Catal 8(1):97–113

    Article  Google Scholar 

  • Geiger FM (2009) Second harmonic generation, sum frequency generation, and χ(3): dissecting environmental interfaces with a nonlinear optical Swiss Army knife. Annu Rev Phys Chem 60:61–83

    Article  Google Scholar 

  • Goodman DW (1996) Correlations between surface science models and “real-world” catalysts. J Phys Chem 100(31):13090–13102

    Article  Google Scholar 

  • Govindasamy A, Muthukumar K, Yu J, Xu Y, Guliants VV (2010) Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo–V–Te–Nb–O mixed metal oxide catalyst. J Phys Chem C 114(10):4544–4549

    Article  Google Scholar 

  • Grasselli F, Basini G, Bussolati S, Bianco F (2005) Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells. Reprod Fertil Dev 17(7):715–720

    Article  Google Scholar 

  • He Q (2013) Study of heterogeneous gold and gold alloy catalysts via analytical electron microscopy. Lehigh University, USA

    Google Scholar 

  • Hutchings GJ (2001) Promotion in heterogeneous catalysis: a topic requiring a new approach? Catal Lett 75(1):1–12

    Article  Google Scholar 

  • Kear B, Breinan E, Greenwald L (1979) Laser glazing–a new process for production and control of rapidly chilled metallurgical microstructures. Met Technol 6(1):121–129

    Article  Google Scholar 

  • Kemball C, Dowden D (1981) Catalysis, vol 4. Royal Society of Chemistry, UK

    Google Scholar 

  • Korlach J, Turner S (2007) Articles having localized molecules disposed thereon and methods of producing and using same. Google Patents

    Google Scholar 

  • Kozuch S, Martin JM (2012) “Turning over” definitions in catalytic cycles. American Chemical Society, USA

    Google Scholar 

  • Kreuer K (1997) On the development of proton conducting materials for technological applications. Solid State Ionics 97(1):1–15

    Article  Google Scholar 

  • Lazcano A, Peretó J (2010) Should the teaching of biological evolution include the origin of life? Evol Educ Outreach 3 (4):661–667

    Google Scholar 

  • Lundie DT, McInroy AR, Marshall R, Winfield JM, Jones P, Dudman CC, Parker SF, Mitchell C, Lennon D (2005) Improved description of the surface acidity of η-alumina. J Phys Chem B 109(23):11592–11601

    Article  Google Scholar 

  • Mallat T, Baiker A (2000) Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl Catal A 200(1):3–22

    Article  Google Scholar 

  • Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  Google Scholar 

  • Moulijn JA, Van Diepen A, Kapteijn F (2001) Catalyst deactivation: is it predictable? What to do? Appl Catal A 212(1):3–16

    Article  Google Scholar 

  • Mukhopadhyay K, Mandale AB, Chaudhari RV (2003) Encapsulated HRh (CO)(PPh3) 3 in microporous and mesoporous supports: novel heterogeneous catalysts for hydroformylation. Chem Mater 15(9):1766–1777

    Article  Google Scholar 

  • Nakamura H, Matsui Y (1995) Silica gel nanotubes obtained by the sol-gel method. J Am Chem Soc 117(9):2651–2652

    Article  Google Scholar 

  • Nijhuis TA, Beers AE, Vergunst T, Hoek I, Kapteijn F, Moulijn JA (2001) Preparation of monolithic catalysts. Catal Rev 43(4):345–380

    Article  Google Scholar 

  • Olah GA, Molnar A (2003) Hydrocarbon chemistry. Wiley, USA

    Google Scholar 

  • Paulik MG, Brooksby PA, Abell AD, Downard AJ (2007) Grafting aryl diazonium cations to polycrystalline gold: insights into film structure using gold oxide reduction, redox probe electrochemistry, and contact angle behavior. The Journal of Physical Chemistry C 111(21):7808–7815

    Article  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne JA, O’shea K (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  Google Scholar 

  • Peyratout CS, Daehne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43(29):3762–3783

    Article  Google Scholar 

  • Price PM, Clark JH, Macquarrie DJ (2000) Modified silicas for clean technology. J Chem Soc Dalton Trans 2:101–110

    Article  Google Scholar 

  • Ramírez J, Macías G, Cedeño L, Gutiérrez-Alejandre A, Cuevas R, Castillo P (2004) The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences. Catal Today 98(1):19–30

    Article  Google Scholar 

  • Raybaud P (2007) Understanding and predicting improved sulfide catalysts: Insights from first principles modeling. Appl Catal A 322:76–91

    Article  Google Scholar 

  • Rimola A, Costa D, Sodupe M, Lambert J-F, Ugliengo P (2013) Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 113(6):4216–4313

    Article  Google Scholar 

  • Roberts FS, Anderson SL, Reber AC, Khanna SN (2015) Initial and Final State Effects in the Ultraviolet and X-ray Photoelectron Spectroscopy (UPS and XPS) of Size-Selected Pd n Clusters Supported on TiO2 (110). J Phys Chem C 119(11):6033–6046

    Article  Google Scholar 

  • Ryczkowski J (2001) IR spectroscopy in catalysis. Catal Today 68(4):263–381

    Article  Google Scholar 

  • Sachtler W (1984) Selectivity and rate of activity decline of bimetallic catalysts. J Mol Catal 25(1–3):1–12

    Article  Google Scholar 

  • Senkan S (2001) Combinatorial heterogeneous catalysis—a new path in an old field. Angew Chem Int Ed 40(2):312–329

    Article  Google Scholar 

  • Skjærvø Ø (2016) Characterization of open tubular enzyme reactors and polymer layer open tubular columns for liquid chromatography. MS thesis

    Google Scholar 

  • Smil V (2004) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT press

    Google Scholar 

  • Stone FS (1975) The significance for oxide catalysis of electronic properties and structure. J Solid State Chem 12(3–4):271–281

    Article  Google Scholar 

  • Stranges AN (1984) Friedrich Bergius and the rise of the German synthetic fuel industry. Isis 75(4):643–667

    Article  Google Scholar 

  • Sturgeon MR, O’Brien MH, Ciesielski PN, Katahira R, Kruger JS, Chmely SC, Hamlin J, Lawrence K, Hunsinger GB, Foust TD (2014) Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem 16(2):824–835

    Article  Google Scholar 

  • Tanaka M, Itadani A, Kuroda Y, Iwamoto M (2012) Effect of pore size and nickel content of Ni-MCM-41 on catalytic activity for ethene dimerization and local structures of nickel ions. J Phys Chem C 116(9):5664–5672

    Article  Google Scholar 

  • Thevenin P, Ersson A, Kušar H, Menon P, Järås SG (2001) Deactivation of high temperature combustion catalysts. Appl Catal A 212(1):189–197

    Article  Google Scholar 

  • Thomas JM, Raja R, Lewis DW (2005) Single-Site heterogeneous catalysts. Angew Chem Int Ed 44(40):6456–6482

    Article  Google Scholar 

  • Tossell JA (1975) The electronic structures of Mg, Al and Si in octahedral coordination with oxygen from SCF Xα MO calculations. J Phys Chem Solids 36(11):1273–1280

    Article  Google Scholar 

  • Valigi M, Gazzoli D, Cimino A, Proverbio E (1999) Ionic size and metal uptake of chromium (VI), molybdenum (VI), and tungsten (VI) species on ZrO2-based catalyst precursors. J Phys Chem B 103(51):11318–11326

    Article  Google Scholar 

  • van Santen RA (2017) Modern heterogeneous catalysis: an introduction. Wiley, USA

    Google Scholar 

  • Walawalkar MG, Roesky HW, Murugavel R (1999) Molecular phosphonate cages: model compounds and starting materials for phosphate materials. Acc Chem Res 32(2):117–126

    Article  Google Scholar 

  • West AR (2007) Solid state chemistry and its applications. Wiley, USA

    Google Scholar 

  • Xue C-H, Ma J-Z (2013) Long-lived superhydrophobic surfaces. J Mater Chem A 1(13):4146–4161

    Article  Google Scholar 

  • Xuereb DJ, Raja R (2011) Design strategies for engineering selectivity in bio-inspired heterogeneous catalysts. Catal Sci Technol 1(4):517–534

    Article  Google Scholar 

  • Zhang Z, Wong TT, Sachtler WM (1991) The effect of Ca2+ and Mg2+ ions on the formation of electron-deficient palladium-proton adducts in zeolite Y. J Catal 128(1):13–22

    Article  Google Scholar 

  • Zhidomirov GM, Chuvylkin ND (1986) Quantum-chemical methods in catalysis. Russ Chem Rev 55(3):153–164

    Article  Google Scholar 

  • Zhu Z, Radovic L, Lu G (2000) Effects of acid treatments of carbon on N2O and NO reduction by carbon-supported copper catalysts. Carbon 38(3):451–464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Bagheri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bagheri, S. (2017). Design of Catalysts, Characterization, Kinetics and Mechanisms of Reactions, Deactivation/Regeneration. In: Catalysis for Green Energy and Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-43104-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43104-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43103-1

  • Online ISBN: 978-3-319-43104-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics