The Personalization of Drug Therapy for Elderly Patients

  • Jan F. Schlender
  • Adam G. Golden
  • Tanay S. Samant
  • Chakradhar V. Lagishetty
  • Stephan Schmidt
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 26)


Personalized drug therapy, described as tailoring the selection of drug and drug dosing to a given patient in order to optimize efficacy and minimize toxicity, has been a longstanding goal in medicine. This goal has been met at various levels of success for different patients and patient populations. While specific dosing regimens and labeling recommendations based on clinical trial data are available for adults, they are frequently lacking for pediatrics and geriatrics. These special patient populations are clinically understudied resulting in a lack of data to be used for establishing respective optimal drug and dosing regimen. While regulators around the globe have responded to this unmet medical need by establishing or updating pediatric guidance documents, the situation is much less evolved for geriatrics. However, there is a plethora of ongoing research, which ranges from reaching expert consensus to genotyping frailty that is geared towards improving the situation. The objective of this book chapter is to introduce and discuss personalized medicine approaches for the elderly patient.


Biomarkers Metabolism Personalized medicine Pharmacogenetics CYP complexes Glomerular filtration rate (GFR) Beers criteria Physiologically based pharmacokinetic (PBPK) models 


  1. 1.
    Lesko LJ, Schmidt S. Individualization of drug therapy: history, present state, and opportunities for the future. Clin Pharmacol Ther. 2012;92(4):458–66.PubMedGoogle Scholar
  2. 2.
    U.S. Department of Health and Human Services Food and Drug Administration. A biological approach to patient treatment. 2012 [updated 2012 Oct 24] [cited 2015 Sep 17]. Available from:
  3. 3.
    Cristofoletti R, Dressman JB. Use of physiologically based pharmacokinetic models coupled with pharmacodynamic models to assess the clinical relevance of current bioequivalence criteria for generic drug products containing Ibuprofen. J Pharm Sci. 2014;103(10):3263–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Herrlinger C, Klotz U. Drug metabolism and drug interactions in the elderly. Best Pract Res Clin Gastroenterol. 2001;15(6):897–918.CrossRefPubMedGoogle Scholar
  5. 5.
    International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. E7 studies in support of special populations: geriatrics. 1993. Available from: Accessed 14 Sept 2015.
  6. 6.
    Beers E, Egberts TC, Leufkens HG, Jansen PA. Information for adequate prescribing to older patients: an evaluation of the product information of 53 recently approved medicines. Drugs Aging. 2013;30(4):255–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Masoudi FA, Havranek EP, Wolfe P, Gross CP, Rathore SS, Steiner JF, et al. Most hospitalized older persons do not meet the enrollment criteria for clinical trials in heart failure. Am Heart J. 2003;146(2):250–7.CrossRefPubMedGoogle Scholar
  8. 8.
    U.S. Department of Health and Human Services Food and Drug Administration. Guidance for industry: E7 studies in support of special populations. Geriatrics Silver Spring: Maryland; 2012. Accessed on 1 Aug 2015.
  9. 9.
    European Medicines Agency. Studies in support of special populations: geriatrics, questions and answers. London: UK; 2010. Available from: Accessed on 1 Aug 2015.
  10. 10.
    Golden AG, Tewary S, Dang S, Roos BA. Care management’s challenges and opportunities to reduce the rapid rehospitalization of frail community-dwelling older adults. Gerontologist. 2010;50(4):451–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Lewis JH, Kilgore ML, Goldman DP, Trimble EL, Kaplan R, Montello MJ, et al. Participation of patients 65 years of age or older in cancer clinical trials. J Clin Oncol. 2003;21(7):1383–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Herrera AP, Snipes SA, King DW, Torres-Vigil I, Goldberg DS, Weinberg AD. Disparate inclusion of older adults in clinical trials: priorities and opportunities for policy and practice change. Am J Public Health. 2010;1(100 Suppl 1):S105–12.CrossRefGoogle Scholar
  13. 13.
    Cherubini A, Del Signore S, Ouslander J, Semla T, Michel JP. Fighting against age discrimination in clinical trials. J Am Geriatr Soc. 2010;58(9):1791–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Swanlund SL. Successful cardiovascular medication management processes as perceived by community-dwelling adults over age 74. Appl Nurs Res. 2010;23(1):22–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Vidal EI, Mayoral VF, Villas Boas PJ, Jacinto AF, Fukushima FB. Physical frailty as a clinical marker of biological age and aging. J Am Geriatr Soc. 2015;63(4):837–8.Google Scholar
  16. 16.
    Saltzman JR, Kowdley KV, Perrone G, Russell RM. Changes in small-intestine permeability with aging. J Am Geriatr Soc. 1995;43(2):160–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Madsen JL, Graff J. Effects of ageing on gastrointestinal motor function. Age Ageing. 2004;33(2):154–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Kyle UG, Genton L, Slosman DO, Pichard C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition. 2001;17(7–8):534–41.Google Scholar
  19. 19.
    Schoeller DA. Changes in total body water with age. Am J Clin Nutr. 1989;50(5 Suppl):1176–81; discussion 231–5.Google Scholar
  20. 20.
    Klotz U, Avant GR, Hoyumpa A, Schenker S, Wilkinson GR. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest. 1975;55(2):347–59.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Turnheim K. Drug dosage in the elderly. Is it rational? Drugs Aging. 1998;13(5):357–79.CrossRefPubMedGoogle Scholar
  22. 22.
    McLean AJ, Le Couteur DG. Aging biology and geriatric clinical pharmacology. Pharmacol Rev. 2004;56(2):163–84.CrossRefPubMedGoogle Scholar
  23. 23.
    Robertson DR, Wood ND, Everest H, Monks K, Waller DG, Renwick AG, et al. The effect of age on the pharmacokinetics of levodopa administered alone and in the presence of carbidopa. Br J Clin Pharmacol. 1989;28(1):61–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gardner MD, Scott R. Age- and sex-related reference ranges for eight plasma constituents derived from randomly selected adults in a Scottish new town. J Clin Pathol. 1980;33(4):380–5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Veering BT, Burm AG, Souverijn JH, Serree JM, Spierdijk J. The effect of age on serum concentrations of albumin and alpha 1-acid glycoprotein. Br J Clin Pharmacol. 1990;29(2):201–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cheng CK, Chan J, Cembrowski GS, van Assendelft OW. Complete blood count reference interval diagrams derived from NHANES III: stratification by age, sex, and race. Lab Hematol. 2004;10(1):42–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Tietz NW, Shuey DF, Wekstein DR. Laboratory values in fit aging individuals—sexagenarians through centenarians. Clin Chem. 1992;38(6):1167–85.PubMedGoogle Scholar
  28. 28.
    Verbeeck RK, Cardinal JA, Wallace SM. Effect of age and sex on the plasma binding of acidic and basic drugs. Eur J Clin Pharmacol. 1984;27(1):91–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Le Couteur DG, McLean AJ. The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin Pharmacokinet. 1998;34(5):359–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Benedetti MS, Whomsley R, Canning M. Drug metabolism in the paediatric population and in the elderly. Drug Discov Today. 2007;12(15–16):599–610.CrossRefPubMedGoogle Scholar
  31. 31.
    Dean L. Clopidogrel therapy and CYP2C19 genotype. 2012 [updated 2013 Mar 18]. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012. Available from:
  32. 32.
    Cusack BJ. Pharmacokinetics in older persons. Am J Geriatr Pharmacother. 2004;2(4):274–302.CrossRefPubMedGoogle Scholar
  33. 33.
    Kinirons MT, O’Mahony MS. Drug metabolism and ageing. Br J Clin Pharmacol. 2004;57(5):540–4.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zeeh J, Platt D. The aging liver: structural and functional changes and their consequences for drug treatment in old age. Gerontology. 2002;48(3):121–7.Google Scholar
  35. 35.
    Temellini A, Giuliani L, Pacifici GM. Interindividual variability in the glucuronidation and sulphation of ethinyloestradiol in human liver. Br J Clin Pharmacol. 1991;31(6):661–4.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology. 1989;9(2):297–301.CrossRefPubMedGoogle Scholar
  37. 37.
    Abernethy DR, Schwartz JB, Todd EL, Luchi R, Snow E. Verapamil pharmacodynamics and disposition in young and elderly hypertensive patients. Altered electrocardiographic and hypotensive responses. Ann Intern Med. 1986;105(3):329–36.CrossRefPubMedGoogle Scholar
  38. 38.
    Rigby JW, Scott AK, Hawksworth GM, Petrie JC. A comparison of the pharmacokinetics of atenolol, metoprolol, oxprenolol and propranolol in elderly hypertensive and young healthy subjects. Br J Clin Pharmacol. 1985;20(4):327–31.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Griffiths GJ, Robinson KB, Cartwright GO, McLachlan MS. Loss of renal tissue in the elderly. Br J Radiol. 1976;49(578):111–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Kane R, Ouslander J, Abrass I, Resnick B. Essentials of clinical geriatrics. 7th ed. New York: McGraw-Hill; 2013.Google Scholar
  41. 41.
    Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232(2):194–201.CrossRefPubMedGoogle Scholar
  42. 42.
    Goyal VK. Changes with age in the human kidney. Exp Gerontol. 1982;17(5):321–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Triggs E, Charles B. Pharmacokinetics and therapeutic drug monitoring of gentamicin in the elderly. Clin Pharmacokinet. 1999;37(4):331–41.CrossRefPubMedGoogle Scholar
  44. 44.
    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Rule AD, Gussak HM, Pond GR, Bergstralh EJ, Stegall MD, Cosio FG, et al. Measured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis. 2004;43(1):112–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Peters AM, Perry L, Hooker CA, Howard B, Neilly MD, Seshadri N, et al. Extracellular fluid volume and glomerular filtration rate in 1878 healthy potential renal transplant donors: effects of age, gender, obesity and scaling. Nephrol Dial Transplant. 2012;27(4):1429–37.CrossRefPubMedGoogle Scholar
  47. 47.
    Grewal GS, Blake GM. Reference data for 51Cr-EDTA measurements of the glomerular filtration rate derived from live kidney donors. Nucl Med Commun. 2005;26(1):61–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Back SE, Ljungberg B, Nilsson-Ehle I, Borga O, Nilsson-Ehle P. Age dependence of renal function: clearance of iohexol and p-amino hippurate in healthy males. Scand J Clin Lab Invest. 1989;49(7):641–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Praga M, Morales E. Obesity-related renal damage: changing diet to avoid progression. Kidney Int. 2010;78(7):633–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001;59(1):260–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Lindeman RD, Tobin JD, Shock NW. Association between blood pressure and the rate of decline in renal function with age. Kidney Int. 1984;26(6):861–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Luft FC, Fineberg NS, Miller JZ, Rankin LI, Grim CE, Weinberger MH. The effects of age, race and heredity on glomerular filtration rate following volume expansion and contraction in normal man. Am J Med Sci. 1980;279(1):15–24.Google Scholar
  54. 54.
    Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157(7):471–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65(4):1416–21.CrossRefPubMedGoogle Scholar
  57. 57.
    Beers MH, Ouslander JG, Rollingher I, Reuben DB, Brooks J, Beck JC. Explicit criteria for determining inappropriate medication use in nursing home residents. UCLA Division of Geriatric Medicine. Arch Intern Med. 1991;151(9):1825–32.CrossRefPubMedGoogle Scholar
  58. 58.
    Beers MH. Explicit criteria for determining potentially inappropriate medication use by the elderly. An update. Arch Intern Med. 1997;157(14):1531–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Fick DM, Cooper JW, Wade WE, Waller JL, Maclean JR, Beers MH. Updating the Beers Criteria for potentially inappropriate medication use in older adults: results of a US consensus panel of experts. Arch Intern Med. 2003;163(22):2716–24.Google Scholar
  60. 60.
    Fick DM, Semla TP. 2012 American Geriatrics Society Beers Criteria: new year, new criteria, new perspective. J Am Geriatr Soc. 2012;60(4):614–5.CrossRefPubMedGoogle Scholar
  61. 61.
    American Geriatric society 2015 Beers Criteria Update Expert Panel. American Geriatric Society 2015 update Beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63(11):2227–2246.Google Scholar
  62. 62.
    Golden A, Silverman M, Daiello L, Llorente M. Inappropriate medication prescribing: going beyond the Beer’s Criteria. Long-Term Care Interface Mag. 2005;6:31–4.Google Scholar
  63. 63.
    Gallagher P, O’Mahony D. STOPP (Screening Tool of Older Persons’ potentially inappropriate Prescriptions): application to acutely ill elderly patients and comparison with Beers’ Criteria. Age Ageing. 2008;37(6):673–9.CrossRefPubMedGoogle Scholar
  64. 64.
    O’Mahony D, O’Sullivan D, Byrne S, O’Connor MN, Ryan C, Gallagher P. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015;44(2):213–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug events in older Americans. N Engl J Med. 2011;365(21):2002–12.CrossRefPubMedGoogle Scholar
  66. 66.
    Golden A, Beers MH, Fick DM. Is it safe to conclude that Beers Criteria medications led to few adverse events? Ann Intern Med. 2008;148(8):628–9; author reply 9.Google Scholar
  67. 67.
    Zineh I, Huang SM. Biomarkers in drug development and regulation: a paradigm for clinical implementation of personalized medicine. Biomark Med. 2011;5(6):705–13.CrossRefPubMedGoogle Scholar
  68. 68.
    Samant TS, Mangal N, Lukacova V, Schmidt S. Quantitative clinical pharmacology for size and age scaling in pediatric drug development: a systematic review. J Clin Pharmacol. 2015.Google Scholar
  69. 69.
    Lagishetty C. Covariates in pharmacometrics. PhD thesis, University of Otago; 2013 Accessed on 15 Sept 2015.
  70. 70.
    Bristol-Myers Squibb, Pfizer EEIG. Eliquis (apixaban) summary of product characteristics. 2013 Accessed on 15 Sept 2015.
  71. 71.
    Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16.CrossRefPubMedGoogle Scholar
  72. 72.
    Saeed MA, Vlasakakis G, Della Pasqua O. Rational use of medicines in older adults: Can we do better during clinical development? Clin Pharmacol Ther. 2015;97(5):440–3.CrossRefPubMedGoogle Scholar
  73. 73.
    Boissel JP, Kahoul R, Marin D, Boissel FH. Effect model law: an approach for the implementation of personalized medicine. J Pers Med. 2013;3(3):177–90.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chabaud S, Girard P, Nony P, Boissel JP. Clinical trial simulation using therapeutic effect modeling: application to ivabradine efficacy in patients with angina pectoris. J Pharmacokinet Pharmacodyn. 2002;29(4):339–63.CrossRefPubMedGoogle Scholar
  75. 75.
    U.S. Department of Health and Human Services Food and Drug Administration. General clinical pharmacology considerations for pediatric studies for drugs and biological products. Silver Spring: Maryland; 2014. Accessed on 12 Sept 2015.
  76. 76.
    Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.CrossRefPubMedGoogle Scholar
  77. 77.
    Yamazaki S, Skaptason J, Romero D, Vekich S, Jones HM, Tan W, et al. Prediction of oral pharmacokinetics of cMet kinase inhibitors in humans: physiologically based pharmacokinetic model versus traditional one-compartment model. Drug Metab Dispos. 2011;39(3):383–93.CrossRefPubMedGoogle Scholar
  78. 78.
    Allan G, Davis J, Dickins M, Gardner I, Jenkins T, Jones H, et al. Pre-clinical pharmacokinetics of UK-453,061, a novel non-nucleoside reverse transcriptase inhibitor (NNRTI), and use of in silico physiologically based prediction tools to predict the oral pharmacokinetics of UK-453,061 in man. Xenobiotica. 2008;38(6):620–40.CrossRefPubMedGoogle Scholar
  79. 79.
    Jones HM, Dickins M, Youdim K, Gosset JR, Attkins NJ, Hay TL, et al. Application of PBPK modelling in drug discovery and development at Pfizer. Xenobiotica. 2012;42(1):94–106.CrossRefPubMedGoogle Scholar
  80. 80.
    Hammerlein A, Derendorf H, Lowenthal DT. Pharmacokinetic and pharmacodynamic changes in the elderly. Clinical implications. Clin Pharmacokinet. 1998;35(1):49–64.CrossRefPubMedGoogle Scholar
  81. 81.
    Borst SE, Scarpace PJ. Reduced high-affinity alpha 1-adrenoceptors in liver of senescent rats: implications of assessment at various temperatures. Br J Pharmacol. 1990;101(3):650–4.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Morley JE, Flood JF, Silver AJ. Opioid peptides and aging. Ann NY Acad Sci. 1990;579:123–32.CrossRefPubMedGoogle Scholar
  83. 83.
    De Buck SS, Sinha VK, Fenu LA, Nijsen MJ, Mackie CE, Gilissen RA. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metab Dispos. 2007;35(10):1766–80.CrossRefPubMedGoogle Scholar
  84. 84.
    Sinha VK, Snoeys J, Osselaer NV, Peer AV, Mackie C, Heald D. From preclinical to human—prediction of oral absorption and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach in an industrial setting: a workflow by using case example. Biopharm Drug Dispos. 2012;33(2):111–21.CrossRefPubMedGoogle Scholar
  85. 85.
    Schaller S, Willmann S, Lippert J, Schaupp L, Pieber TR, Schuppert A, et al. A generic integrated physiologically based whole-body model of the glucose-insulin-glucagon regulatory system. CPT Pharmacometrics Syst Pharmacol. 2013;2:e65.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Colburn WA et al. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.Google Scholar
  87. 87.
    Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G. Mechanism-based pharmacokinetic-pharmacodynamic modeling-a new classification of biomarkers. Pharm Res. 2005;22(9):1432–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Emdin M, Vittorini S, Passino C, Clerico A. Old and new biomarkers of heart failure. Eur J Heart Fail. 2009;11(4):331–5.CrossRefPubMedGoogle Scholar
  89. 89.
    Ershler WB. Interleukin-6: a cytokine for gerontologists. J Am Geriatr Soc. 1993;41(2):176–81.CrossRefPubMedGoogle Scholar
  90. 90.
    Yeh SS, Blackwood K, Schuster MW. The cytokine basis of cachexia and its treatment: are they ready for prime time? J Am Med Dir Assoc. 2008;9(4):219–36.CrossRefPubMedGoogle Scholar
  91. 91.
    de Ruijter W, Westendorp RG, Assendelft WJ, den Elzen WP, de Craen AJ, le Cessie S, et al. Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. BMJ. 2009;338:a3083.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Bots ML, Launer LJ, Lindemans J, Hoes AW, Hofman A, Witteman JC, et al. Homocysteine and short-term risk of myocardial infarction and stroke in the elderly: the Rotterdam Study. Arch Intern Med. 1999;159(1):38–44.CrossRefPubMedGoogle Scholar
  93. 93.
    Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8:24.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Reuben DB, Cheh AI, Harris TB, Ferrucci L, Rowe JW, Tracy RP, et al. Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons. J Am Geriatr Soc. 2002;50(4):638–44.CrossRefPubMedGoogle Scholar
  95. 95.
    Salanitro AH, Ritchie CS, Hovater M, Roth DL, Sawyer P, Locher JL, et al. Inflammatory biomarkers as predictors of hospitalization and death in community-dwelling older adults. Arch Gerontol Geriatr. 2012;54(3):e387–91.Google Scholar
  96. 96.
    Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002;27(2):1.CrossRefGoogle Scholar
  97. 97.
    Golden A, Troen B. Biology of aging. In: Hirth V, Wieland D, Dever-Bumba M, editors. Case-based geriatrics. New York: McGraw Hill; 2010.Google Scholar
  98. 98.
    Butler RN, Sprott R, Warner H, Bland J, Feuers R, Forster M, et al. Biomarkers of aging: from primitive organisms to humans. J Gerontol A Biol Sci Med Sci. 2004;59(6):B560–7.CrossRefPubMedGoogle Scholar
  99. 99.
    Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132(12):1323–38.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Miles C, Wayne M. Quantitative trait locus (QTL) analysis. Nat Educ. 2008;1(1):208.Google Scholar
  101. 101.
    Oztaner SM, Taskaya Temizel T, Erdem SR, Ozer M. A Bayesian estimation framework for pharmacogenomics driven warfarin dosing: a comparative study. IEEE J Biomed Health Inform. 2015;19(5):1724–33.Google Scholar
  102. 102.
    Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–79.CrossRefPubMedGoogle Scholar
  103. 103.
    U.S. Department of Health and Human Services Food and Drug Administration. Table of pharmacogenomic biomarkers in drug labeling. 2015 [updated 2015 May 20] [cited 2015 Sep 17]. Available from:
  104. 104.
    Miao L, Yang J, Huang C, Shen Z. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol. 2007;63(12):1135–41.CrossRefPubMedGoogle Scholar
  105. 105.
    Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.CrossRefPubMedGoogle Scholar
  107. 107.
    Bor JS. The search for effective Alzheimer’s therapies: a work in progress. Health Aff (Millwood). 2014;33(4):527–33.CrossRefGoogle Scholar
  108. 108.
    U.S. Department of Health and Human Services Food and Drug Administration. Guidance for industry: pediatric study plans. Silver Spring: Maryland; 2013. Available at: Accessed on 1 Aug 2015.
  109. 109.
    European Parliament and of the Council. Regulation (EC) No. 1901/2006 of the European Parliament and of the Council on medicinal products for paediatric use and amending Regulation (EEC) No. 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No. 726/2004; 2006. Available at: Accessed on 1 Aug 2015.
  110. 110.
    Kang BP, Slosberg E, Snodgrass S, Lebedinsky C, Berry DA, Corless CL, et al. The signature program: bringing the protocol to the patient. Clin Pharmacol Ther. 2015;98(2):124–6.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Berry SM, Broglio KR, Groshen S, Berry DA. Bayesian hierarchical modeling of patient subpopulations: efficient designs of Phase II oncology clinical trials. Clin Trials. 2013;10(5):720–34.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2016

Authors and Affiliations

  • Jan F. Schlender
    • 1
    • 2
  • Adam G. Golden
    • 3
    • 4
  • Tanay S. Samant
    • 5
  • Chakradhar V. Lagishetty
    • 5
  • Stephan Schmidt
    • 5
  1. 1.Institute of Pharmacy, Clinical PharmacyUniversity of BonnBonnGermany
  2. 2.Computational Systems BiologyBayer Technology Services GmbHLeverkusenGermany
  3. 3.Department of Internal MedicineUniversity of Central Florida College of MedicineOrlandoUSA
  4. 4.Geriatrics and Extended CareOrlando Veterans Affairs Medical CenterOrlandoUSA
  5. 5.Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoUSA

Personalised recommendations