Skip to main content

Manufacturing Platforms for Patient-Centric Drug Products

  • Chapter
  • First Online:
Developing Drug Products in an Aging Society

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 26))

Abstract

This text aims to provide a brief overview of tablet and capsule manufacturing approaches, to highlight some of the industrial engineering issues that exist in standard secondary manufacturing processes for oral solid dose products (which may often be overlooked by those who are unfamiliar with pharmaceutical production activities), and to provide a review of dose forms that are commonly employed for elderly patient groups. At present, a limited set of oral dose forms is used by the industry for this purpose, some of which formulation approaches offer potential benefits in terms of ease of swallowing by elderly patients, and these product types are considered briefly. The aim is to provide an overview and summary of existing formulation and manufacturing approaches that are used for the provision of dose forms for elderly patients, noting the associated practical issues and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins JC, Porras JI. Built to last. New York: Random House; 1994.

    Google Scholar 

  2. Pattina J. Should the marketing division set the strategy for pharmaceutical R&D? Forbes. http://www.forbes.com/sites/johnlamattina/2013/12/19/should-the-marketing-division-set-strategy-for-pharmaceutical-rd/#28f5f0481e68. Accessed 28 Apr 2016.

  3. Mentzer D. Progress review of the European pediatric regulatory framework after six years of implementation. Int J Pharm. 2014;469:240–3.

    Article  CAS  PubMed  Google Scholar 

  4. Van Riet-Nales DA, Schobben AFAM, Egberts TCG, Rademaker CMA. Effects of the pharmaceutical technologic aspects of oral pediatric drugs on patient-related outcomes: a systematic literature review. Clin Ther. 2010;32(5):924–38.

    Article  PubMed  Google Scholar 

  5. Association of British Pharmaceutical Industry (“ABPI”). http://www.abpi.org.uk/industry-info/knowledge-hub/global-industry/Pages/industry-market-.aspx. Accessed 21 Oct 2015.

  6. Hapgood KP. Nucleation and binder dispersion in wet granulation. PhD Thesis, University of Queensland; 2000.

    Google Scholar 

  7. Summers MP, Aulton M. Granulation. In: Aulton ME, editor. Aulton’s pharmaceutics: the design and manufacture of medicines. 3rd ed. Edinburgh: Churchill-Livingstone (Elsevier Limited); 2007.

    Google Scholar 

  8. Aulton ME. Drying. In: Aulton ME, editor. Aulton’s pharmaceutics: the design and manufacture of medicines. 3rd ed. Edinburgh: Churchill-Livingstone (Elsevier Limited); 2007.

    Google Scholar 

  9. Nieuwmeyer F, van der voort Maarschalk K, Vromans H. Granule breakage during drying processes. Int J Pharm. 2007;329:81–7.

    Google Scholar 

  10. Alderborn G. Tablets and compaction. In: Aulton ME, editor. Aulton’s pharmaceutics: the design and manufacture of medicines. 3rd ed. Edinburgh: Churchill-Livingstone (Elsevier Limited); 2007.

    Google Scholar 

  11. Stracey J, Tracy R. Secondary pharmacaeutical production. In: Bennet W, Cole G, editors. Pharmaceutical production: an engineering guide. Rugby: Institution of Chemical Engineers; 2003.

    Google Scholar 

  12. Sinka IC, Motazedian F, Cocks ACF, Pitt KG. The effect of processing parameters on pharmaceutical tablet properties. Powder Technol. 2009;189:276–84.

    Article  CAS  Google Scholar 

  13. Kirsch D. Fixing tableting problems. Pharm Technol. 2015;39(5):58–9. http://www.pharmtech.com/fixing-tableting-problems. Accessed 25 May 2016.

  14. Seaward D. Personal communication; 2016.

    Google Scholar 

  15. Porter SC. Coating of tablets and multiparticulates. In: Aulton ME, editor. Aulton’s pharmaceutics: the design and manufacture of medicines. 3rd ed. Edinburgh: Churchill-Livingstone (Elsevier Limited); 2007.

    Google Scholar 

  16. Cole ET, Cadé D, Benameur H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv Drug Deliv Rev. 2008;60(6):747–56.

    Article  CAS  PubMed  Google Scholar 

  17. Ku MS, Li W, Dulin W, Donahue F, Cade D, Benameur H, Hutchison K. Performance qualification of a new hypromellose capsule: Part I. Comparative evaluation of physical, mechanical and processability quality attributes of VCaps Plus®, Quali-V® and gelatin capsules. Int J Pharm. 2010;386(1):30–41.

    Google Scholar 

  18. Tuleu C, Khela MK, Evans DF, Jones BE, Nagata S, Basit AW. A scintigraphic investigation of the disintegration behaviour of capsules in fasting subjects: a comparison of hypromellose capsules containing carrageenan as a gelling agent and standard gelatin capsules. Eur J Pharm Sci. 2007;30(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  19. Clarke. Personal communication; 2016.

    Google Scholar 

  20. Jones BE. Hard gelatin capsules. In: Aulton ME, editor. Aulton’s pharmaceutics: the design and manufacture of medicines. 3rd ed. Edinburgh: Churchill-Livingstone (Elsevier Limited); 2007.

    Google Scholar 

  21. Elder D. Personal communication; 2016.

    Google Scholar 

  22. MG2. Company Website. http://www.mg2.it/process/SitePages/Machines%20and%20speeds.aspx. Accessed 28 Apr 2016.

  23. Honeywell. Honeywell Aclar Films (Product Brochure). https://www.honeywell-aclar.com/ProductInformation/Pages/WhatisAclar.aspx. Accessed 28 Apr 2016.

  24. Staniforth J. Secondary processing training course. Amsterdam: Centre for Professional Advancement; 1995.

    Google Scholar 

  25. Jones BE. Personal communication; 2003.

    Google Scholar 

  26. Schaber SD, Gerogiorgis DI, Ramachandran R, Evans JMB, Barton PI, Trout BL. Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind Eng Chem Res. 2011;50:10083–92.

    Article  CAS  Google Scholar 

  27. Basu P, Joglekar G, Rai S, Suresh P, Vernon J. Analysis of manufacturing costs in pharmaceutical companies. J Pharm Innov. 2008;3:30–40.

    Article  Google Scholar 

  28. Suresh P, Basu PK. Improving pharmaceutical product development and manufacturing: impact on cost of drug development and cost of goods sold of pharmaceuticals. J Pharm Innov. 2008;3:175–87.

    Article  Google Scholar 

  29. Pinheiro E, Vasan A, Kim JY, Lee E, Guimier JM, Perriens J. Examining the production costs of antiretroviral drugs. AIDS. 2006;20:1745–52.

    Article  PubMed  Google Scholar 

  30. Masoumi AH, Yu M, Nagurney A. A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability. Transp Res Part E. 2012;48:762–80.

    Article  Google Scholar 

  31. Papageorgiou LG. Supply chain optimisation for the process industries: advances and opportunities. Comput Chem Eng. 2009;33:1931–8.

    Article  CAS  Google Scholar 

  32. Rossetti CL, Handfield R, Dooley KJ. Forces, trends, and decisions in pharmaceutical supply chain management. Int J Phys Distrib Logist Manag. 2011;41(6):601–22.

    Article  Google Scholar 

  33. Sousa RT, Liu S, Papageorgiou LG, Shah N. Global supply chain planning for pharmaceuticals. Chem Eng Res Des. 2011;89:2396–409.

    Article  CAS  Google Scholar 

  34. Susarla N, Karimi IA. Integrated supply chain planning for multinational pharmaceutical enterprises. Comput Chem Eng. 2012;42:168–77.

    Article  CAS  Google Scholar 

  35. Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans JMB, Jamison TF, Jensen KF, Myerson AS, Trout BL. End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int. 2013;52:12359–63.

    Article  CAS  Google Scholar 

  36. Plumb K. Continuous processing in the pharmaceutical industry: changing the mind set. Chem Eng Res Des. 2005;83(A6):730–8.

    Article  CAS  Google Scholar 

  37. Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD, Moore CMV, Yu LX, Woodcock J. Modernizing pharmaceutical manufacturing: from batch to continuous production. J Pharm Innov. 2015; 10:191.

    Google Scholar 

  38. Poechlauer P, Manley J, Broxterman R, Gregersten B, Ridemark M. Continuous processing in the manufacture of active pharmaceutical ingredients and finished dosage forms: an industry perspective. Org Process Res. 2012;16:1586–90.

    Article  CAS  Google Scholar 

  39. Singh R, Ierapetritou M, Ramachandran R. An engineering study on the enhanced control and operation of continuous manufacturing of pharmaceutical tablets via roller compaction. Int J Pharm. 2012; 438(1-2):307-26.

    Google Scholar 

  40. Singh R, Sahay A, Karry KM, Muzzio F, Ierapetritou M, Ramachandran R. Implementation of an advanced hybrid MPC–PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant. Int J Pharm. 2014;473:38–54.

    Article  CAS  PubMed  Google Scholar 

  41. Salunke S, Hempenstall J, Kendall R, Roger B, Mroz C, Nunn T, Tuleu C. European Pediatric formulation initiative’s (EuPFI) 2nd conference commentary—formulating better medicines for children. Int J Pharm. 2011;419:235–9.

    Article  CAS  PubMed  Google Scholar 

  42. Sam T, Ernest TB, Walsh J, Williams JL on behalf of the European Pediatric Formulation Initiative (EuPFI). A benefit/risk approach towards selecting appropriate pharmaceutical dosage forms—an application for Pediatric dosage form selection. Int J Pharm. 2012;435:115–23.

    Google Scholar 

  43. Standing JF, Tuleu C. Pediatric formulations—getting to the heart of the problem. Int J Pharm. 2005;300:56–66.

    Article  CAS  PubMed  Google Scholar 

  44. Orlu-Gul M, Raimi-Abraham B, Jamieson E, Wei L, Murray M, Stawarz K, Stegemann S, Tuleu C, Smith FJ. Public engagement workshop: how to improve medicines for older people? Int J Pharm. 2014;459:65–9.

    Article  CAS  PubMed  Google Scholar 

  45. Stegemann S, Baeyens J-P, Cerreta F, Chanie E, Lofgren A, Maio M, Schreier G, Thesing-Bleck E. Adherence measurement systems and technology for medications in older patient populations. Eur Geriatr Med. 2012;3:254–60.

    Article  Google Scholar 

  46. Stegemann S, Gosch M, Breitkreutz J. Swallowing dysfunction and dysphagia is an unrecognized challenge for oral drug therapy. Int J Pharm. 2012;430:197–206.

    Article  CAS  PubMed  Google Scholar 

  47. Stegemann S, Baeyens J-P, Becker R, Maio M, Bresciani M, Shreeves T, Ecker F, Gogol M. Design of pharmaceutical products to meet future patient needs requires modification of current development paradigms and business models. Z Gerontol Geriat. 2014;47:285–7.

    Google Scholar 

  48. Perrie Y, Badhan RKS, Kirby DJ, Lowry D, Mohammed AR, Ouyang D. The impact of ageing on the barriers to drug delivery. J Control Release. 2012;161:389–98.

    Article  CAS  PubMed  Google Scholar 

  49. Stegemann S, Eckerb F, Maio M, Kraahs P, Wohlfart R, Breitkreutz J, Zimmer A, Bar-Shalom D, Hettrich P, Broegmann B. Geriatric drug therapy: neglecting the inevitable majority. Ageing Res Rev. 2010;9:384–98.

    Article  PubMed  Google Scholar 

  50. Liu F, Ranmal S, Batchelor HK, Orlu-Gul M, Ernest TB, Thomas IW, Flanagan T, Tuleu C. Patient-centred pharmaceutical design to improve acceptability of medicines: similarities and differences in pediatric and geriatric populations. Drugs. 2014;74:1871–89.

    Google Scholar 

  51. Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)—a novel solid oral dosage form for pediatric use. Eur J Pharm Biopharm. 2011;78:462–9.

    Article  CAS  PubMed  Google Scholar 

  52. Ernest. Personal communication; 2016.

    Google Scholar 

  53. Sandri G, Bonferoni MC, Ferrari F, Rossi S, Caramella C. Differentiating factors between oral fast-dissolving technologies. Am J Drug Deliv. 2006;4(4):249–62.

    Article  CAS  Google Scholar 

  54. Jonathan G, Karim A. 3-D printing in pharmaceutics: a new tool for designing customised delivery systems. Int J Pharm. 2016; 376–94.

    Google Scholar 

  55. Goyanes A, Buanz ABM, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476:88–92.

    Article  CAS  PubMed  Google Scholar 

  56. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, Gaisford S, Basit AW. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496:414–20.

    Article  CAS  PubMed  Google Scholar 

  57. Goyanes A, Martinez PR, Buanz ABM, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2015):657–63.

    Article  CAS  PubMed  Google Scholar 

  58. Goyanes A, Wang J, Buanz A, Martinez-Pacheco R, Telford R, Gaisford S, Basit AW. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12:4077–84.

    Article  CAS  PubMed  Google Scholar 

  59. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461:105–11.

    Article  CAS  PubMed  Google Scholar 

  60. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494:643–50.

    Article  CAS  PubMed  Google Scholar 

  61. Palmer E. Company builds plant for 3DP pill making as it nails first FDA approval. Fierce Biotech Newsletter. 3 Aug 2015. http://www.fiercepharmamanufacturing.com/story/fda-approves-seizure-drug-made-3-d-technology/2015-08-03. Accessed 28 Feb 2016.

  62. Disch T, Haala J, Koeberle M. Hot-melt coated immediate-release taste-masked paracetamol and caffeine orally-disintegrating granules. Pullach: Hermes Pharma; 2016.

    Google Scholar 

  63. Klingmann V, Seitz A, Meissner T, Breitkreutz J, Moeltner A, Bosse HM. Acceptability of uncoated mini-tablets in neonates—a randomized controlled trial. J Pediatr. 2015;167(4):893–6.

    Article  PubMed  Google Scholar 

  64. Tissen C, Woertz K, Breitkreutz J, Kleinebudde P. Development of mini-tablets with 1 mm and 2 mm diameter. Int J Pharm. 2011;416:164–70.

    Article  CAS  PubMed  Google Scholar 

  65. Bredenberg S, Nyholm D, Aquilonius S-M, Nyström C. An automatic dose dispenser for microtablets—a new concept for individual dosage of drugs in tablet form. Int J Pharm. 2003;261:137–46.

    Article  CAS  PubMed  Google Scholar 

  66. Lam JKW, Xu Y, Worsley A, Wong ICK. Oral transmucosal drug delivery for pediatric use. Adv Drug Deliv Rev. 2014;73:50–62.

    Article  CAS  PubMed  Google Scholar 

  67. Madhav NVS, Shakya AK, Shakya P, Singh K. Orotransmucosal drug delivery systems: a review. J Control Release. 2009;140:2–11.

    Article  CAS  PubMed  Google Scholar 

  68. Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Delivery. 2011;8(3):299–316.

    Google Scholar 

  69. Dixit RP, Puthli SP. Oral strip technology: overview and future potential. J Control Release. 2009;139:94–107.

    Article  CAS  PubMed  Google Scholar 

  70. Borges AF, Silva C, Coelho JFJ, Simões S. Oral films: current status and future perspectives. I—Galenical development and quality attributes. J Control Release. 2015;206(2015):1–19.

    Article  CAS  PubMed  Google Scholar 

  71. Hutchison KG, Ferdinando J. Soft gelatin capsules. In: Aulton ME, editor. Aulton’s pharmaceutics: the design and manufacture of medicines. 3rd ed. Edinburgh: Churchill-Livingstone (Elsevier Limited); 2007.

    Google Scholar 

  72. Wening K, Breitkreutz J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm. 2011;404:1–9.

    Article  CAS  PubMed  Google Scholar 

  73. Preis M, Breitkreutz J, Sandler N. Perspective: concepts of printing technologies for oral film formulations. Int J Pharm. 2015;494:578–84.

    Article  CAS  PubMed  Google Scholar 

  74. Capsugel (2011) Capsugel acquires Novel FlexTab™ drug delivery technology, enhancing value for customers (Press Release, 9 Feb 2011). http://www.capsugel.com/news-events/news/capsugel-acquires-novel-flextabtm-drug-delivery-technology-enhancing-value. Accessed 24 May 2016.

  75. Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci. 2015;75:2–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully thanks A Clarke, D Dinner, D Elder, T Ernest, D Seaward and S van den Ban for graciously and kindly providing comments on a draft version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Wilson, M.W. (2016). Manufacturing Platforms for Patient-Centric Drug Products. In: Stegemann, S. (eds) Developing Drug Products in an Aging Society. AAPS Advances in the Pharmaceutical Sciences Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-43099-7_22

Download citation

Publish with us

Policies and ethics