Skip to main content

Ergodicity of the Weil–Petersson Geodesic Flow

  • Chapter
  • First Online:
Ergodic Theory and Negative Curvature

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2164))

  • 1042 Accesses

Abstract

We describe the proof that the geodesic flow for the Weil–Petersson metric on the moduli space of Riemann surfaces is ergodic and in fact Bernoulli. Other chapters in this volume complement this summary by describing in depth the needed implementation of the Hopf argument and some of the pertinent aspects of moduli spaces of Riemann surfaces (and Teichmüller theory).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Before our work appeared, Pollicott and Weiss [PW09] gave a fairly complete outline of how to prove ergodicity for the Weil–Petersson metric in these cases. They studied the model case of a negatively curved surface whose singularities coincide with a surface of revolution for a polynomial and proved ergodicity of the geodesic flow in this case. They say that the missing ingredients are the bounds on the first and second derivatives of the geodesic flow.

  2. 2.

    For almost every vT 1 M, there exists an infinite geodesic (necessarily unique) tangent to v.

References

  1. D.V. Anosov, Geodesic Flows on Closed Riemann Manifolds with Negative Curvature. Trudy Mat. Institute. V.A. Steklova, vol. 90 (American Mathematical Society, Providence, RI, 1969/1967)

    Google Scholar 

  2. W. Ballmann, M. Brin, K. Burns, On the differentiability of horocycles and horocycle foliations. J. Differ. Geom. 26(2), 337–347 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bridgeman, Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space. Geom. Topol. 14, 799–831 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.F. Brock, H. Masur, Y. Minsky, Asymptotics of Weil–Petersson geodesic. I. Ending laminations, recurrence, and flows. Geom. Funct. Anal. 19, 1229–1257 (2010)

    Google Scholar 

  5. K. Burns, H. Masur, A. Wilkinson, The Weil–Petersson geodesic flow is ergodic. Ann. Math. (2) 175(2), 835–908 (2012)

    Google Scholar 

  6. J. Cheeger, D.G. Ebin, Comparison Theorems in Riemannian Geometry (AMS Chelsea Publishing, Providence, RI, 2008); revised reprint of the 1975 original

    Google Scholar 

  7. D. Dolgopyat, H. Hu, Y. Pesin, An example of a smooth hyperbolic measure with countably many ergodic components, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999). Proceedings of Symposia in Pure Mathematics, vol. 69 (American Mathematical Society, Providence, RI, 2001)

    Google Scholar 

  8. P.B. Eberlein, Geometry of Nonpositively Curved Manifolds. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1996)

    Google Scholar 

  9. P.B. Eberlein, Geodesic flows in manifolds of nonpositive curvature, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999). Proceedings of Symposia in Pure Mathematics, vol. 69 (American Mathematical Society, Providence, RI, 2001), pp. 525–571

    Google Scholar 

  10. U. Hamenstädt, Dynamical properties of the Weil–Petersson metric, in In the Tradition of Ahlfors–Bers. V. Contemporary Mathematics, vol. 510 (American Mathematical Society, Providence, RI, 2010), pp. 109–127

    Google Scholar 

  11. B. Hasselblatt, Introduction to hyperbolic dynamics and ergodic theory, in Ergodic Theory and Negative Curvature, ed. by B. Hasselblatt. Lecture Notes in Mathematics, vol. 2164 (Springer, Cham, 2017). doi:10.1007/978-3-319-43059-1_1

  12. E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 91, 261–304 (1939)

    MathSciNet  MATH  Google Scholar 

  13. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, vol. 54 (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  14. A. Katok, J.-M. Strelcyn, F. Ledrappier, F. Przytycki, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lecture Notes in Mathematics, vol. 1222 (Springer, New York, 1986)

    Google Scholar 

  15. C.T. McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic. Ann. Math. 151, 327–357 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. C.T. McMullen, Thermodynamics, dimension and the Weil–Petersson metric. Invent. Math. 173, 365–425 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Mirzakhani, Growth of the number of simple closed geodesics on hyperbolic surfaces. Ann. Math. 168, 97–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y.B. Pesin, Characteristic Lyapunov exponents and ergodic properties of smooth dynamical systems with invariant measure. Dokl. Akad. Nauk SSSR 226, 774–777 (1976)

    MathSciNet  MATH  Google Scholar 

  19. M. Pollicott, H. Weiss, Ergodicity of the geodesic flow on noncomplete negatively curved surfaces. Asian J. Math. 13, 405–419 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Pollicott, H. Weiss, S.A. Wolpert, Topological dynamics of the Weil–Petersson geodesic flow. Adv. Math. 223 (2010), 1225–1235

    Article  MathSciNet  MATH  Google Scholar 

  21. C.C. Pugh, The C 1+α hypothesis in Pesin theory. Inst. Hautes Études Sci. Publ. Math. 59, 143–161 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10, 338–354 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.-P. Serre: Rigiditée de foncteur d’Jacobi d’echelonn ≥ 3. 1961, Sem. H. Cartan 1960/1961 Appendix to Exp. 17.

    Google Scholar 

  24. Y.G. Sinai, Dynamical systems with elastic reflections: ergodic properties of scattering billiards. Russ. Math. Surv. 25, 137–189 (1970)

    Article  MATH  Google Scholar 

  25. S.A. Wolpert, Understanding Weil–Petersson Curvature. Geometry and Analysis. No. 1. Advanced Lectures in Mathematics (ALM), vol. 17 (International Press, Somerville, MA, 2011), pp. 495–515

    Google Scholar 

  26. S.A. Wolpert, The Fenchel–Nielsen deformation. Ann. Math. 115, 501–528 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. S.A. Wolpert, Geometry of the Weil–Petersson completion of Teichmüller space, in Surveys in Differential Geometry (Boston, MA, 2002), vol. VIII (International Press, Somerville, MA, 2003), pp. 357–393

    Google Scholar 

  28. S.A. Wolpert, Behavior of geodesic-length functions on Teichmüller space. J. Differ. Geom. 79, 277–334 (2008)

    Article  MATH  Google Scholar 

  29. S.A. Wolpert, Extension of the Weil–Petersson connection. Duke Math. J. 146, 281–303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Burns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burns, K., Masur, H., Wilkinson, A. (2017). Ergodicity of the Weil–Petersson Geodesic Flow. In: Hasselblatt, B. (eds) Ergodic Theory and Negative Curvature. Lecture Notes in Mathematics, vol 2164. Springer, Cham. https://doi.org/10.1007/978-3-319-43059-1_4

Download citation

Publish with us

Policies and ethics