Skip to main content

An Omics Approach to Transition Cow Immunity

  • Chapter
  • First Online:
Periparturient Diseases of Dairy Cows

Abstract

Traditionally, research of transition cow immunity has focused on a reductionist approach trying to pinpoint a single factor that causes periparturient immunosuppression. Both previous and recent research has revealed that this phenomenon has a multifactorial etiology and that our current understanding remains insufficient to properly manage the high disease incidence at this time. In taking a systems biology approach through omics technologies we will be able to develop a fundamental understanding of the causal agents and the mechanisms underlying immunosuppression where preceding technologies have failed. Moreover, these new technologies have the potential to help us develop management techniques to restore the normality of immune response during transition period and lower the increased disease incidence that follows immunosuppression. It should be noted that currently application of omics approaches to transition cow immunity are at their pioneering level and further research is warranted to realize the importance of these sciences in the field of cow health and immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abuelo A, Hernandez J, Benedito JL, Castillo C (2015) The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. J Anim Physiol Anim Nutr 99(6):1003–1016

    Article  CAS  Google Scholar 

  • Aleri JW, Hine BC, Pyman MF, Mansell PD, Wales WJ, Mallard B, Fisher AD (2016) Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period. Res Vet Sci 108:8–17

    Article  CAS  PubMed  Google Scholar 

  • Burton JL, Kehrli ME Jr, Kapil S, Horst RL (1995) Regulation of L-selectin and CD18 on bovine neutrophils by glucocorticoids: effects of cortisol and dexamethasone. J Leukoc Biol 57(2):317–325

    CAS  PubMed  Google Scholar 

  • Burton JL, Madsen SA, Yao J, Sipkovsky SS, Coussens PM (2001) An immunogenomics approach to understanding periparturient immunosuppression and mastitis susceptibility in dairy cows. Acta Vet Scand 42(3):407–424

    CAS  PubMed  Google Scholar 

  • Burton JL, Madsen SA, Chang LC, Weber PS, Buckham KR, van Dorp R, Hickey MC, Earley B (2005) Gene expression signatures in neutrophils exposed to glucocorticoids: a new paradigm to help explain “neutrophil dysfunction” in parturient dairy cows. Vet Immunol Immunopathol 105(3–4):197–219

    Article  CAS  PubMed  Google Scholar 

  • Busato A, Faissle D, Kupfer U, Blum JW (2002) Body condition scores in dairy cows: associations with metabolic and endocrine changes in healthy dairy cows. J Vet Med A Physiol Pathol Clin Med 49(9):455–460

    Article  CAS  PubMed  Google Scholar 

  • Cha E, Bar D, Hertl JA, Tauer LW, Bennett G, Gonzalez RN, Schukken YH, Welcome FL, Grohn YT (2011) The cost and management of different types of clinical mastitis in dairy cows estimated by dynamic programming. J Dairy Sci 94(9):4476–4487

    Article  CAS  PubMed  Google Scholar 

  • Chacin MFL, Hansen PJ, Drost M (1990) Effects of stage of the estrous cycle and steroid treatment on uterine immunoglobulin content and polymorphonuclear leukocytes in cattle. Theriogenology 34(6):1169–1184

    Article  CAS  Google Scholar 

  • Coico R, Sunshine G (2015) Immunology: a short course, 7th edn. Wiley, Chichester

    Google Scholar 

  • Dann HM, Litherland NB, Underwood JP, Bionaz M, D’Angelo A, McFadden JW, Drackley JK (2006) Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. J Dairy Sci 89(9):3563–3577

    Article  CAS  PubMed  Google Scholar 

  • Dervishi E, Zhang G, Hailemariam D, Dunn SM, Ametaj BN (2015) Innate immunity and carbohydrate metabolism alterations precede occurrence of subclinical mastitis in transition dairy cows. J Anim Sci Technol 57:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Dervishi E, Zhang G, Hailemariam D, Dunn SM, Ametaj BN (2016a) Occurrence of retained placenta is preceded by an inflammatory state and alterations of energy metabolism in transition dairy cows. J Anim Sci Biotechnol 7:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Dervishi E, Zhang G, Hailemariam D, Goldansaz SA, Deng Q, Dunn SM, Ametaj BN (2016b) Alterations in innate immunity reactants and carbohydrate and lipid metabolism precede occurrence of metritis in transition dairy cows. Res Vet Sci 104:30–39

    Article  CAS  PubMed  Google Scholar 

  • Detilleux JC, Grohn YT, Eicker SW, Quaas RL (1997) Effects of left displaced abomasum on test day milk yields of Holstein cows. J Dairy Sci 80(1):121–126

    Article  CAS  PubMed  Google Scholar 

  • Dosogne H, Burvenich C, Freeman AE, Kehrli ME Jr, Detilleux JC, Sulon J, Beckers JF, Hoeben D (1999) Pregnancy-associated glycoprotein and decreased polymorphonuclear leukocyte function in early post-partum dairy cows. Vet Immunol Immunopathol 67(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Drackley JK (1999) ADSA foundation scholar award. Biology of dairy cows during the transition period: the final frontier? J Dairy Sci 82(11):2259–2273

    Article  CAS  PubMed  Google Scholar 

  • Ferdowsi Nia E, Nikkhah A, Rahmani HR, Alikhani M, Mohammad Alipour M, Ghorbani GR (2010) Increased colostral somatic cell counts reduce pre-weaning calf immunity, health and growth. J Anim Physiol Anim Nutr 94:628–634

    Article  CAS  Google Scholar 

  • Gilbert RO, Shin ST, Guard CL, Erb HN, Frajblat M (2005) Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 64(9):1879–1888

    Article  PubMed  Google Scholar 

  • Godden SM (2008) Colostrum management for dairy calves. Vet Clin N Am Food Anim Pract 24(1):19–39

    Article  Google Scholar 

  • Griffin JF (1989) Stress and immunity: a unifying concept. Vet Immunol Immunopathol 20(3):263–312

    Article  CAS  PubMed  Google Scholar 

  • Grinberg N, Elazar S, Rosenshine I, Shpigel NY (2008) Beta-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infect Immun 76(6):2802–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamadani H, Khan AA, Banday MT, Ashraf I, Handoo N, Shah AB, Hamadani A (2013) Bovine mastitis—a disease of serious concern for dairy farmers. Int J Livest Res 3(1):42–55

    Article  Google Scholar 

  • Hillreiner M, Flinspach C, Pfaffl MW, Kliem H (2016) Effect of the ketone body Beta-Hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells. PLoS One 11(6):e0157774

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoeben D, Burvenich C, Massart-Leen AM, Lenjou M, Nijs G, Van Bockstaele D, Beckers JF (1999) In vitro effect of ketone bodies, glucocorticosteroids and bovine pregnancy-associated glycoprotein on cultures of bone marrow progenitor cells of cows and calves. Vet Immunol Immunopathol 68(2–4):229–240

    Article  CAS  PubMed  Google Scholar 

  • Huzzey JM, Mann S, Nydam DV, Grant RJ, Overton TR (2015) Associations of peripartum markers of stress and inflammation with milk yield and reproductive performance in Holstein dairy cows. Prev Vet Med 120(3–4):291–297

    Article  PubMed  Google Scholar 

  • Ingvartsen KL, Moyes KM (2015) Factors contributing to immunosuppression in the dairy cow during the periparturient period. Jpn J Vet Res 63(1):S15–S24

    PubMed  Google Scholar 

  • Kehrli ME Jr, Nonnecke BJ, Roth JA (1989a) Alterations in bovine lymphocyte function during the periparturient period. Am J Vet Res 50(2):215–220

    PubMed  Google Scholar 

  • Kehrli ME Jr, Nonnecke BJ, Roth JA (1989b) Alterations in bovine neutrophil function during the periparturient period. Am J Vet Res 50(2):207–214

    PubMed  Google Scholar 

  • Kimura K, Goff JP, Kehrli ME Jr, Reinhardt TA (2002) Decreased neutrophil function as a cause of retained placenta in dairy cattle. J Dairy Sci 85(3):544–550

    Article  CAS  PubMed  Google Scholar 

  • Kindahl H, Kornmatitsuk B, Konigsson K, Gustafsson H (2002) Endocrine changes in late bovine pregnancy with special emphasis on fetal well-being. Domest Anim Endocrinol 23(1–2):321–328

    Article  CAS  PubMed  Google Scholar 

  • Lamote I, Meyer E, Duchateau L, Burvenich C (2004) Influence of 17β-estradiol, progesterone, and dexamethasone on diapedesis and viability of bovine blood polymorphonuclear leukocytes. J Dairy Sci 87(10):3340–3349

    Article  CAS  PubMed  Google Scholar 

  • Lamote I, Meyer E, De Ketelaere A, Duchateau L, Burvenich C (2006) Influence of sex steroids on the viability and CD11b, CD18 and CD47 expression of blood neutrophils from dairy cows in the last month of gestation. Vet Res 37(1):61–74

    Article  CAS  PubMed  Google Scholar 

  • Lau ME, Loughman JA, Hunstad DA (2012) YbcL of uropathogenic Escherichia coli suppresses transepithelial neutrophil migration. Infect Immun 80(12):4123–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc SJ (2008) Postpartum uterine disease and dairy herd reproductive performance: a review. Vet J 176(1):102–114

    Article  PubMed  Google Scholar 

  • LeBlanc S (2010) Monitoring metabolic health of dairy cattle in the transition period. J Reprod Dev 56(35):S29–S35

    Article  PubMed  Google Scholar 

  • LeBlanc SJ, Lissemore KD, Kelton DF, Duffield TF, Leslie KE (2006) Major advances in disease prevention in dairy cattle. J Dairy Sci 89(4):1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Lippolis JD, Peterson-Burch BD, Reinhardt TA (2006) Differential expression analysis of proteins from neutrophils in the periparturient period and neutrophils from dexamethasone-treated dairy cows. Vet Immunol Immunopathol 111(3–4):149–164

    Article  CAS  PubMed  Google Scholar 

  • Loughman JA, Hunstad DA (2011) Attenuation of human neutrophil migration and function by uropathogenic bacteria. Microbes Infect 13(6):555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loughman JA, Yarbrough ML, Tiemann KM, Hunstad DA (2016) Local generation of Kynurenines mediates inhibition of neutrophil Chemotaxis by Uropathogenic Escherichia coli. Infect Immun 84(4):1176–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen SA, Weber PS, Burton JL (2002) Altered expression of cellular genes in neutrophils of periparturient dairy cows. Vet Immunol Immunopathol 86(3–4):159–175

    Article  CAS  PubMed  Google Scholar 

  • Mallard BA, Dekkers JC, Ireland MJ, Leslie KE, Sharif S, Lacey Vankampen C, Wagter L, Wilkie BN (1998) Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. J Dairy Sci 81(2):585–595

    Article  CAS  PubMed  Google Scholar 

  • Mallard BA, Emam M, Paibomesai M, Thompson-Crispi K, Wagter-Lesperance L (2015) Genetic selection of cattle for improved immunity and health. Jpn J Vet Res 63(1):S37–S44

    PubMed  Google Scholar 

  • Maslanka T (2014) Effect of dexamethasone and meloxicam on counts of selected T lymphocyte subpopulations and NK cells in cattle - in vivo investigations. Res Vet Sci 96(2):338–346

    Article  CAS  PubMed  Google Scholar 

  • Mehrzad J, Desrosiers C, Lauzon K, Robitaille G, Zhao X, Lacasse P (2005) Proteases involved in mammary tissue damage during endotoxin-induced mastitis in dairy cows. J Dairy Sci 88(1):211–222

    Article  CAS  PubMed  Google Scholar 

  • Mordak R, Stewart PA (2015) Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: examples of prevention. Acta Vet Scand 57(84):015–0175

    Google Scholar 

  • Nagahata H, Ogawa A, Sanada Y, Noda H, Yamamoto S (1992) Peripartum changes in antibody producing capability of lymphocytes from dairy cows. Vet Q 14(1):39–40

    Article  CAS  PubMed  Google Scholar 

  • Nonnecke BJ, Burton JL, Kehrli ME Jr (1997) Associations between function and composition of blood mononuclear leukocyte populations from Holstein bulls treated with dexamethasone. J Dairy Sci 80(10):2403–2410

    Article  CAS  PubMed  Google Scholar 

  • Overton TR, Waldron MR (2004) Nutritional management of transition dairy cows: strategies to optimize metabolic health. J Dairy Sci 87:E105–E119

    Article  Google Scholar 

  • Pareek CS, Smoczynski R, Pierzchala M, Czarnik U, Tretyn A (2011) From genotype to phenotype in bovine functional genomics. Brief Funct Genomics 10(3):165–171

    Article  PubMed  Google Scholar 

  • Powers ME, Bubeck Wardenburg J (2014) Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog 10(2):e1003871

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajala PJ, Grohn YT (1998) Effects of dystocia, retained placenta, and metritis on milk yield in diary cows. J Dairy Sci 81(12):3172–3181

    Article  CAS  PubMed  Google Scholar 

  • Ruegg PL (2012) New perspectives in udder health management. Vet Clin North Am Food Anim Pract 28(2):149–163

    Article  PubMed  Google Scholar 

  • Sahana G, Guldbrandtsen B, Thomsen B, Holm LE, Panitz F, Brondum RF, Bendixen C, Lund MS (2014) Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle. J Dairy Sci 97(11):7258–7275

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Suzuki T, Okada K (1995) Suppression of mitogenic response of bovine peripheral blood lymphocytes by ketone bodies. J Vet Med Sci 57(1):183–185

    Article  CAS  PubMed  Google Scholar 

  • Scalia D, Lacetera N, Bernabucci U, Demeyere K, Duchateau L, Burvenich C (2006) In vitro effects of nonesterified fatty acids on bovine neutrophils oxidative burst and viability. J Dairy Sci 89(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Schrick FN, Hockett ME, Saxton AM, Lewis MJ, Dowlen HH, Oliver SP (2001) Influence of subclinical mastitis during early lactation on reproductive parameters. J Dairy Sci 84(6):1407–1412

    Article  CAS  PubMed  Google Scholar 

  • Seifi HA, Gorji-Dooz M, Mohri M, Dalir-Naghadeh B, Farzaneh N (2007) Variations of energy-related biochemical metabolites during transition period in dairy cows. Comp Clin Pathol 16(4):253–258

    Article  CAS  Google Scholar 

  • Senger PL (2003) Pathways to pregnancy and parturition, 2nd edn. Current Conceptions, Pullman

    Google Scholar 

  • Sheldon IM, Dobson H (2004) Postpartum uterine health in cattle. Anim Reprod Sci 83:295–306

    Article  Google Scholar 

  • Sheldon IM, Price SB, Cronin J, Gilbert RO, Gadsby JE (2009) Mechanisms of infertility associated with clinical and subclinical endometritis in high producing dairy cattle. Reprod Domest Anim 3:1–9

    Article  Google Scholar 

  • Shi X, Li D, Deng Q, Li Y, Sun G, Yuan X, Song Y, Wang Z, Li X, Liu G (2015) NEFAs activate the oxidative stress-mediated NF-kappaB signaling pathway to induce inflammatory response in calf hepatocytes. J Steroid Biochem Mol Biol 145:103–112

    Article  CAS  PubMed  Google Scholar 

  • Simenew K, Wondu M (2013) Transition period and immunosuppression: critical period of dairy cattle reproduction. Int J Anim Vet Adv 5(2):44–57

    Google Scholar 

  • Sordillo LM (2013) Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet Med Int 154045(10):14

    Google Scholar 

  • Sordillo LM, Aitken SL (2009) Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol 128(1–3):104–109

    Article  CAS  PubMed  Google Scholar 

  • Sordillo LM, Raphael W (2013) Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet Clin North Am Food Anim Pract 29(2):267–278

    Article  PubMed  Google Scholar 

  • Sordillo LM, Streicher KL (2002) Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia 7(2):135–146

    Article  PubMed  Google Scholar 

  • Sordillo LM, Contreras GA, Aitken SL (2009) Metabolic factors affecting the inflammatory response of periparturient dairy cows. Anim Health Res Rev 10(1):53–63

    Article  PubMed  Google Scholar 

  • Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Ster C, Loiselle MC, Lacasse P (2012) Effect of postcalving serum nonesterified fatty acids concentration on the functionality of bovine immune cells. J Dairy Sci 95(2):708–717

    Article  CAS  PubMed  Google Scholar 

  • Suriyasathaporn W, Heuer C, Noordhuizen-Stassen EN, Schukken YH (2000) Hyperketonemia and the impairment of udder defense: a review. Vet Res 31(4):397–412

    Article  CAS  PubMed  Google Scholar 

  • Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13(9):529–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson-Crispi KA, Sargolzaei M, Ventura R, Abo-Ismail M, Miglior F, Schenkel F, Mallard BA (2014) A genome-wide association study of immune response traits in Canadian Holstein cattle. BMC Genomics 15(559):1471–2164

    Google Scholar 

  • Tiwari JG, Babra C, Tiwari HK, Williams V, Wet SD, Gibson J, Paxman A, Morgan E, Costantino P, Sunagar R, Isloor S, Mukkur T (2013) Trends in therapeutic and prevention strategies for management of bovine mastitis: an overview. J Vaccines Vaccin 4(176):2

    Google Scholar 

  • do Vale A, Cabanes D, Sousa S (2016) Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol 7:42

    PubMed  PubMed Central  Google Scholar 

  • Van Dyke TE, Bartholomew E, Genco RJ, Slots J, Levine MJ (1982) Inhibition of neutrophil chemotaxis by soluble bacterial products. J Periodontol 53(8):502–508

    Article  PubMed  Google Scholar 

  • Van Merris V, Meyer E, Duchateau L, Burvenich C (2004) Differential effects of steroids and retinoids on bovine myelopoiesis in vitro. J Dairy Sci 87(5):1188–1195

    Article  PubMed  Google Scholar 

  • Walker CG, Meier S, Hussein H, McDougall S, Burke CR, Roche JR, Mitchell MD (2015) Modulation of the immune system during postpartum uterine inflammation. Physiol Genomics 47(4):89–101

    Article  CAS  PubMed  Google Scholar 

  • Wathes DC, Cheng Z, Chowdhury W, Fenwick MA, Fitzpatrick R, Morris DG, Patton J, Murphy JJ (2009) Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows. Physiol Genomics 39(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber PS, Madsen-Bouterse SA, Rosa GJ, Sipkovsky S, Ren X, Almeida PE, Kruska R, Halgren RG, Barrick JL, Burton JL (2006) Analysis of the bovine neutrophil transcriptome during glucocorticoid treatment. Physiol Genomics 28(1):97–112

    Article  CAS  PubMed  Google Scholar 

  • Williams AE (2012) Immunology: mucosal and body surface defences. Wiley, Chichester

    Google Scholar 

  • Williams EJ, Herath S, England GC, Dobson H, Bryant CE, Sheldon IM (2008a) Effect of Escherichia coli infection of the bovine uterus from the whole animal to the cell. Animal 2(8):1153–1157

    Article  CAS  PubMed  Google Scholar 

  • Williams EJ, Sibley K, Miller AN, Lane EA, Fishwick J, Nash DM, Herath S, England GC, Dobson H, Sheldon IM (2008b) The effect of Escherichia coli lipopolysaccharide and tumour necrosis factor alpha on ovarian function. Am J Reprod Immunol 60(5):462–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YX, Wang JQ, Bu DP, Li SS, Yuan LY, Yang JH, Sun P (2012) Comparative proteomics analysis of plasma proteins during the transition period in dairy cows with or without subclinical mastitis after calving. Czech J Anim Sci 57(10):481–489

    CAS  Google Scholar 

  • Yates JR 3rd (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct 33:297–316

    Article  CAS  PubMed  Google Scholar 

  • Zarrin M, Wellnitz O, van Dorland HA, Bruckmaier RM (2014) Induced hyperketonemia affects the mammary immune response during lipopolysaccharide challenge in dairy cows. J Dairy Sci 97(1):330–339

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Hailemariam D, Dervishi E, Deng Q, Goldansaz SA, Dunn SM, Ametaj BN (2015) Alterations of innate immunity reactants in transition dairy cows before clinical signs of lameness. Animals 5(3):717–747

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Hailemariam D, Dervishi E, Goldansaz SA, Deng Q, Dunn SM, Ametaj BN (2016) Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum. Res Vet Sci 107:246–256

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Lacasse P (2008) Mammary tissue damage during bovine mastitis: causes and control. J Anim Sci 86(13 Suppl):57–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily F. Eckel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eckel, E.F., Ametaj, B.N. (2017). An Omics Approach to Transition Cow Immunity. In: Ametaj, B. (eds) Periparturient Diseases of Dairy Cows. Springer, Cham. https://doi.org/10.1007/978-3-319-43033-1_3

Download citation

Publish with us

Policies and ethics